Time Limit: 20 Sec  Memory Limit: 552 MB
Submit: 2380  Solved: 1130

Description

YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域。简单起见,可以将YT市看作一个
正方形,每一个区域也可看作一个正方形。从而,YT城市中包括(n+1)×(n+1)个交叉路口和2n×(n+1)条双向道路
(简称道路),每条双向道路连接主干道上两个相邻的交叉路口。下图为一张YT市的地图(n = 2),城市被划分为2
×2个区域,包括3×3个交叉路口和12条双向道路。 小Z作为该市的市长,他根据统计信息得到了每天上班高峰期
间YT市每条道路两个方向的人流量,即在高峰期间沿着该方向通过这条道路的人数。每一个交叉路口都有不同的海
拔高度值,YT市市民认为爬坡是一件非常累的事情,每向上爬h的高度,就需要消耗h的体力。如果是下坡的话,则
不需要耗费体力。因此如果一段道路的终点海拔减去起点海拔的值为h(注意h可能是负数),那么一个人经过这段路
所消耗的体力是max{0, h}(这里max{a, b}表示取a, b两个值中的较大值)。 小Z还测量得到这个城市西北角的交
叉路口海拔为0,东南角的交叉路口海拔为1(如上图所示),但其它交叉路口的海拔高度都无法得知。小Z想知道在
最理想的情况下(即你可以任意假设其他路口的海拔高度),每天上班高峰期间所有人爬坡所消耗的总体力和的最
小值。

Input

第一行包含一个整数n,含义如上文所示。接下来4n(n + 1)行,每行包含一个非负整数分别表示每一条道路每一个
方向的人流量信息。输入顺序:n(n + 1)个数表示所有从西到东方向的人流量,然后n(n + 1)个数表示所有从北到
南方向的人流量,n(n + 1)个数表示所有从东到西方向的人流量,最后是n(n + 1)个数表示所有从南到北方向的人
流量。对于每一个方向,输入顺序按照起点由北向南,若南北方向相同时由西到东的顺序给出(参见样例输入)。

Output

仅包含一个数,表示在最理想情况下每天上班高峰期间所有人爬坡所消耗的总体力和(即总体力和的最小值),结
果四舍五入到整数。

Sample Input

1
1
2
3
4
5
6
7
8

Sample Output

3

【样例说明】
样例数据见下图。

最理想情况下所有点的海拔如上图所示。
对于100%的数据:1 ≤ n ≤ 500,0 ≤ 流量 ≤ 1,000,000且所有流量均为整数。

HINT

 

Source

脑补一下可以知道,应该把图分成只有0和只有1的两个联通块,使得01交界处边权和最小。

↑似乎是最小割。

看一下数据范围,网络流肯定会T,那么尝试将最小割转为最短路。

从地图东北方到西南方(方向,不一定要到角上)找一条路径,使得费用最小。

在别的博客看到了神奇的不显式建边的写法,果断学学学。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n;
int mp[mxn][mxn][];
int dis[mxn][mxn];
struct dist{
int x,y,dis;
bool operator < (const dist b) const{
return dis>b.dis;
}
};
priority_queue<dist>q;
int ans=1e9;
void insert(int x,int y,int d){
if(d<dis[x][y]){
dis[x][y]=d;
q.push((dist){x,y,d});
}
if(y==)ans=min(ans,d+mp[x][y][]);
if(x==n)ans=min(ans,d+mp[x+][y][]);
}
int Dij(){
int i,j;
for(i=;i<=n;i++)insert(,i,mp[][i][]);
for(j=;j<=n;j++)insert(j,n,mp[j][n+][]);
while(!q.empty()){
dist now=q.top();q.pop();
if(now.dis>dis[now.x][now.y])continue;
int x=now.x;int y=now.y;
if(x>){
insert(x-,y,now.dis+mp[now.x][now.y][]);
}
if(y>){
insert(x,y-,now.dis+mp[now.x][now.y][]);
}
if(x<n){
insert(x+,y,now.dis+mp[now.x+][now.y][]);
}
if(y<n){
insert(x,y+,now.dis+mp[now.x][now.y+][]);
}
}
return ;
}
int main(){
int i,j;
n=read();
for(i=;i<=n+;i++)
for(j=;j<=n;j++)mp[i][j][]=read();//从西到东
for(i=;i<=n;i++)
for(j=;j<=n+;j++)mp[i][j][]=read();//从北到南
for(i=;i<=n+;i++)
for(j=;j<=n;j++)mp[i][j][]=read();//从东到西
for(i=;i<=n;i++)
for(j=;j<=n+;j++)mp[i][j][]=read();//从南到北
memset(dis,0x3f,sizeof dis);
Dij();
cout<<ans<<endl;
return ;
}

Bzoj2007 [Noi2010]海拔的更多相关文章

  1. Bzoj2007 [Noi2010]海拔(平面图最短路)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2742  Solved: 1318[Submit][Status] ...

  2. [BZOJ2007][NOI2010]海拔(对偶图最短路)

    首先确定所有点的海拔非0即1,问题转化成裸的平面图最小割问题,进而转化成对偶图最短路(同BZOJ1002). 这题的边是有向的,所以所有边顺时针旋转90度即可. 如下图(S和T的位置是反的). #in ...

  3. bzoj2007 NOI2010 海拔(对偶图)

    80分(最小割)思路 先考虑如果没有题目中东南角为\(1\)那个限制的话会怎样. 那么只要让每个点的海拔都是\(0\)就行了.这样不论怎样走,最后的答案都是0. 然后再考虑那个东南角为\(1\)的限制 ...

  4. BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】

    题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...

  5. bzoj千题计划129:bzoj2007: [Noi2010]海拔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2007 1.所有点的高度一定在0~1之间, 如果有一个点的高度超过了1,那么必定会有人先上坡,再下坡, ...

  6. BZOJ2007 NOI2010 海拔 平面图转对偶图 最小割

    题面太长啦,请诸位自行品尝—>海拔 分析: 这是我见过算法比较明显的最小割题目了,很明显对于某一条简单路径,海拔只会有一次变换. 而且我们要最终使变换海拔的边权值和最小. 我们发现变换海拔相当于 ...

  7. BZOJ2007——[Noi2010]海拔

    1.题意:一个裸的最小割 2.分析:直接转成对偶图最短路就好了,水爆了!(雾) #include <queue> #include <cstdio> #include < ...

  8. 【BZOJ2007】[Noi2010]海拔 对偶图最短路

    [BZOJ2007][Noi2010]海拔 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看 ...

  9. BZOJ 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status] ...

随机推荐

  1. Windows 8.1 新增控件之 AppBar

    Windows 8.1 与Windows 8 相比已经有了很多改进,从ITPro 角度这篇文章<What's New in Windows 8.1>已经表述的很详细.对开发者来说,最明显的 ...

  2. maven buid 导出项目依赖的jar包问题

    [ERROR] Failed to execute goal org.apache.maven.plugins:maven-dependency-plugin:2.8:copy-dependencie ...

  3. C#.NET 大型通用信息化系统集成快速开发平台 4.0 版本 - 省市区数据权限的实现效果

    折腾了2-3周,终于把全国网点数据权限,省.市.县数据规范化,查询权限规范化,基础数据规范化的思路理清楚了, 今天应该是一个里程碑式的一天 省市区数据规范化后 1:网点的基础数据可以更加严谨规范化. ...

  4. easyui layout 折叠后显示标题

    (function($){ var buttonDir = {north:'down',south:'up',east:'left',west:'right'}; $.extend($.fn.layo ...

  5. lecture10-模型的结合与全贝叶斯学习

    这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural ne ...

  6. TensorFlow 源代码初读感受

    把自己微博发的文章:http://www.weibo.com/1804230372/En7PdlgLb?from=page_1005051804230372_profile&wvr=6& ...

  7. Android Studio代码混淆插件

    之前给公司的App添加代码混淆,在代码的混淆过程也遇到了不少的问题,再加上最近学习了一下Android Studio插件的开发,所以就开发一个代码混淆插件方便项目的代码混淆. 截图 第三方库列表清单 ...

  8. DSOFramer 之一:在 64 位系统注册 DSOFramer

    DSOFramer是微软提供的一款用于在线编辑.调用Word.Excel等Office程序的ActiveX组件.很多第三方的Office组件都是基于DSOFramer组件开发的.今天我们不讲如何使用D ...

  9. VS2013无法链接到TFS(Visual studio online),错误TF31001,TF31002

    TF31002: Unable to connect to VisualStudio Online with VS 2013 but I can using web access - Windows ...

  10. LXC的介绍

    LXC又名Linux container,是一种虚拟化的解决方案,这种是内核级的虚拟化.(主流的解决方案Xen ,KVM, LXC) 介绍 通过namespace进行资源的隔离,Gust1下的进程与G ...