NumPy 随机数据分布与 Seaborn 可视化详解
随机数据分布
什么是数据分布?
数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。
在统计学和数据科学中,数据分布是分析数据的重要基础。
NumPy 中的随机分布
NumPy 的 random 模块提供了多种方法来生成服从不同分布的随机数。
生成离散分布随机数
choice(a, p, size):从数组 a 中随机选择元素,并根据概率 p 进行选择。
a:源数组,包含所有可能值。
p:每个值的概率数组,总和必须为 1。
size:输出数组的形状。
示例:生成 100 个随机数,其中 3 出现的概率为 0.2,5 出现的概率为 0.4,7 出现的概率为 0.3,9 出现的概率为 0.1:
import numpy as np
x = np.random.choice([3, 5, 7, 9], p=[0.2, 0.4, 0.3, 0.1], size=100)
print(x)
生成连续分布随机数
NumPy 提供了多种方法来生成服从不同连续分布的随机数,例如正态分布、均匀分布、指数分布等。
randn(size):生成服从标准正态分布的随机数。
rand(size):生成服从均匀分布的随机数。
beta(a, b, size):生成服从 Beta 分布的随机数。
gamma(shape, scale, size):生成服从 Gamma 分布的随机数。
poisson(lam, size):生成服从泊松分布的随机整数。
示例:生成 10 个服从标准正态分布的随机数:
import numpy as np
x = np.random.randn(10)
print(x)
随机排列
洗牌数组
shuffle(arr):对数组 arr 进行随机洗牌,修改原始数组。
示例:随机洗牌数组 [1, 2, 3, 4, 5]:
import numpy as np
from numpy.random import shuffle
arr = np.array([1, 2, 3, 4, 5])
shuffle(arr)
print(arr)
生成数组的随机排列
permutation(arr):生成数组 arr 元素的随机排列,不修改原始数组。
示例:生成数组 [1, 2, 3, 4, 5] 的随机排列:
import numpy as np
from numpy.random import permutation
arr = np.array([1, 2, 3, 4, 5])
x = permutation(arr)
print(x)
练习
- 使用
choice方法生成 200 个随机数,其中 1 出现的概率为 0.1,2 出现的概率为 0.2,3 出现的概率为 0.7。 - 生成 10 个服从指数分布的随机数。
- 对数组
[10, 20, 30, 40, 50]进行随机洗牌。 - 生成数组
[6, 7, 8, 9, 10]元素的随机排列。
解决方案
import numpy as np
from numpy.random import choice, permutation, expon
# 1. 使用 choice 方法生成随机数
random_numbers = choice([1, 2, 3], p=[0.1, 0.2, 0.7], size=200)
print(random_numbers)
# 2. 生成服从指数分布的随机数
exponential_randoms = expon(scale=1, size=10)
print(exponential_randoms)
# 3. 对数组进行随机洗牌
arr = np.array([10, 20, 30, 40, 50])
shuffle(arr)
print(arr)
# 4. 生成数组的随机排列
random_permutation = permutation([6, 7, 8, 9, 10])
print(random_permutation)
使用 Seaborn 可视化分布
简介
Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,用于创建统计图表。它提供了一系列高级绘图函数,可以轻松创建美观且信息丰富的统计图形。
安装 Seaborn
如果您已经安装了 Python 和 pip,可以使用以下命令安装 Seaborn:
pip install seaborn
如果您使用的是 Jupyter Notebook,可以使用以下命令安装 Seaborn:
!pip install seaborn
绘制分布图
分布图是一种可视化数据分布的图表。它显示了数据集中每个值的出现频率。
在 Seaborn 中,可以使用 sns.distplot() 函数绘制分布图。该函数接受以下参数:
data:要绘制分布的数据。可以是数组、列表或 Pandas 数据框。
hist:如果为 True(默认),则绘制直方图;如果为 False,则只绘制密度曲线。
kde:如果为 True(默认),则使用核密度估计 (KDE) 来估计数据的分布;如果为 False,则使用直方图。
bins:用于创建直方图的直方图数量。
norm:用于规范分布的类型。例如,norm='kde' 将使用 KDE 来规范分布。
示例:绘制正态分布
以下示例演示如何使用 Seaborn 绘制正态分布:
import seaborn as sns
import numpy as np
# 生成随机数据
data = np.random.randn(1000)
# 绘制分布图
sns.distplot(data)
plt.show()
该代码将生成 1000 个服从标准正态分布的随机数,并使用 Seaborn 绘制它们的分布图。
示例:绘制自定义分布
以下示例演示如何绘制自定义分布:
import seaborn as sns
import numpy as np
# 生成自定义数据
data = [1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9]
# 绘制分布图
sns.distplot(data, hist=False, kde=False)
plt.show()
该代码将生成一个包含重复值的自定义数据数组,并使用 Seaborn 绘制它们的分布图,不显示直方图或密度曲线。
练习
- 生成 500 个服从均匀分布的随机数,并绘制它们的分布图。
- 生成 1000 个服从指数分布的随机数,并绘制它们的分布图。
- 从以下数据中绘制分布图:
data = [23, 37, 43, 29, 31, 32, 36, 27, 31, 33, 34, 25, 27, 28, 42, 38, 27, 27, 33, 31, 26, 29, 31, 35, 33, 30, 30, 32, 36, 28, 31, 33, 38, 29, 31, 31, 34, 36, 26, 25, 26, 34, 37, 28, 36, 31, 29, 31, 27, 28, 32, 37, 30, 33, 33, 27, 31, 32, 32, 36, 25, 32, 35, 37, 37, 30, 31, 34, 33, 29, 32, 31, 36, 26, 29, 31, 37, 28, 28, 37, 31, 32, 36, 33, 27, 31, 32, 33, 32, 32, 30, 27, 36, 38, 35, 26, 32, 37, 31, 30, 33, 30, 27,
## 最后
为了方便其他设备和平台的小伙伴观看往期文章:
微信公众号搜索:`Let us Coding`,关注后即可获取最新文章推送
看完如果觉得有帮助,欢迎点赞、收藏、关注
NumPy 随机数据分布与 Seaborn 可视化详解的更多相关文章
- Pandas系列(十二)-可视化详解
目录 1. 折线图 2. 柱状图 3. 直方图 4. 箱线图 5. 区域图 6. 散点图 7. 饼图六边形容器图 数据分析的结果不仅仅只是你来看的,更多的时候是给需求方或者老板来看的,为了更直观地看出 ...
- Numpy数组的组合与分割详解
在介绍数组的组合和分割前,我们需要先了解数组的维(ndim)和轴(axis)概念. 如果数组的元素是数组,即数组嵌套数组,我们就称其为多维数组.几层嵌套就称几维.比如形状为(a,b)的二维数组就可以看 ...
- coco标注信息与labelme标注信息的详解、相互转换及可视化
引言 在做实例分割或语义分割的时候,我们通常要用labelme进行标注,labelme标注的json文件与coco数据集已经标注好的json文件的格式和内容有差异.如果要用coco数据集的信息,就要对 ...
- 详解Python Streamlit框架,用于构建精美数据可视化web app,练习做个垃圾分类app
今天详解一个 Python 库 Streamlit,它可以为机器学习和数据分析构建 web app.它的优势是入门容易.纯 Python 编码.开发效率高.UI精美. 上图是用 Streamlit 构 ...
- 机器学习——随机森林,RandomForestClassifier参数含义详解
1.随机森林模型 clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=4) rf_clf = c ...
- 可视化的Redis数据库管理工具redis-desktop-manager的初步使用(图文详解)
不多说,直接上干货! 无论是Linux 还是 Windows里安装Redis, Windows里如何正确安装Redis以服务运行(博主推荐)(图文详解) Windows下如何正确下载并安装可视化的Re ...
- Windows下如何正确下载并安装可视化的Redis数据库管理工具(redis-desktop-manager)(图文详解)
不多说,直接上干货! Redis Desktop Manager是一个可视化的Redis数据库管理工具,使用非常简单. 官网下载:https://redisdesktop.com/down ...
- qml学习笔记(二):可视化元素基类Item详解(上半场anchors等等)
原博主博客地址:http://blog.csdn.net/qq21497936本文章博客地址:http://blog.csdn.net/qq21497936/article/details/78516 ...
- 给Clouderamanager集群里安装可视化分析利器工具Hue步骤(图文详解)
扩展博客 以下,是我在手动的CDH版本,安装Hue. CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz)(博主 ...
- 给Ambari集群里安装可视化分析利器工具Hue步骤(图文详解)
扩展博客 以下,是我在手动的CDH版本平台下,安装Hue. CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz) ...
随机推荐
- selenium报错:Message: stale element reference: element is not attached to the page document
在使用selenium时,报了一个错误 报错的原因: 所引用的元素已过时,不再依附于当前页面.通常情况下,这是因为页面进行了刷新或跳转 解决方法: 重新定位元素 代码示例: # 旧代码(报错) lis ...
- 【编译原理】Antlr 入门使用
前面文章我们学习了编译器前端的词法和语法分析工具,本篇我们来看看如何借助 Antlr 工具,快速生成词法和语法分析代码. 一.安装 mac 环境: 1)安装 brew install antlr 2) ...
- 家庭实验室系列文章-如何迁移树莓派系统到更大的 SD 卡?
前言 其实这个专题很久很久之前就想写了,但是一直因为各种原因拖着没动笔. 因为没有资格,也没有钱在一线城市买房 (); 但是在要结婚之前,婚房又是刚需. 我和太太最终一起在一线城市周边的某二线城市买了 ...
- 美团二面:如何保证Redis与Mysql双写一致性?连续两个面试问到了!
引言 Redis作为一款高效的内存数据存储系统,凭借其优异的读写性能和丰富的数据结构支持,被广泛应用于缓存层以提升整个系统的响应速度和吞吐量.尤其是在与关系型数据库(如MySQL.PostgreSQL ...
- iOS的cer、p12格式证书解析监控
之前博客写过直接解析ipa包获取mobileprovision文件来监控APP是否过期来,但APP的推送证书还没有做, 大家都知道,iOS的推送证书不会放到ipa包里,只能通过直接解析p12或cer. ...
- NodeJs进阶开发、性能优化指南
相信对于前端同学而言,我们去开发一个自己的简单后端程序可以借助很多的nodeJs的框架去进行快速搭建,但是从前端面向后端之后,我们会在很多方面会稍显的有些陌生,比如性能分析,性能测试,内存管理,内存查 ...
- Spark3.0 Standalone模式部署
之前介绍过Spark 1.6版本的部署,现在最新版本的spark为3.0.1并且已经完全兼容hadoop 3.x,同样仍然支持RDD与DataFrame两套API,这篇文章就主要介绍一下基于Hadoo ...
- ClkLog自定义事件分析登场
ClkLog的自定义事件分析功能在大家满满的期待下终于发布了. 这次更新我们添加了[用户关联].[事件采集].[事件分析]三大块功能点. 本次上线的自定义事件分析可以让用户根据自身业务场景创建不同维 ...
- Fluid 助力阿里云 Serverless 容器极致提速
简介: 本文展示了一个在 ASK 环境中运行 Fluid 的完整数据访问示例,希望能够帮助大家了解 Fluid 的使用体验.运行效果以及 Serverless 和数据密集型应用结合的更多可行性. 作者 ...
- 消息队列Kafka「检索组件」重磅上线!
简介:本文对消息队列 Kafka「检索组件」进行详细介绍,首先通过对消息队列使用过程中的痛点问题进行介绍,然后针对痛点问题提出相应的解决办法,并对关键技术技术进行解读,旨在帮助大家对消息队列 Kaf ...