Problem Statement

We have a rooted tree with $N$ vertices numbered $1,2,\dots,N$.

The tree is rooted at Vertex $1$, and the parent of Vertex $i \ge 2$ is Vertex $P_i(<i)$.

For each integer $k=1,2,\dots,N$, solve the following problem:

There are $2^{k-1}$ ways to choose some of the vertices numbered between $1$ and $k$ so that Vertex $1$ is chosen.

How many of them satisfy the following condition: the subgraph induced by the set of chosen vertices forms a perfect binary tree (with $2^d-1$ vertices for a positive integer $d$) rooted at Vertex $1$?

Since the count may be enormous, print the count modulo $998244353$.

What is an induced subgraph?

Let $S$ be a subset of the vertex set of a graph $G$. The subgraph $H$ induced by this vertex set $S$ is constructed as follows:

  • Let the vertex set of $H$ equal $S$.
  • Then, we add edges to $H$ as follows:
    • For all vertex pairs $(i, j)$ such that $i,j \in S, i < j$, if there is an edge connecting $i$ and $j$ in $G$, then add an edge connecting $i$ and $j$ to $H$.
What is a perfect binary tree?

A perfect binary tree is a rooted tree that satisfies all of the following conditions:

  • Every vertex that is not a leaf has exactly $2$ children.
  • All leaves have the same distance from the root.

Here, we regard a graph with \(1\) vertex and \(0\) edges as a perfect binary tree, too.

Constraints

  • All values in input are integers.
  • $1 \le N \le 3 \times 10^5$
  • $1 \le P_i < i$

Input

Input is given from Standard Input in the following format:

$N$
$P_2$ $P_3$ $\dots$ $P_N$

Output

Print $N$ lines.
The $i$-th ($1 \le i \le N$) line should contain the answer as an integer when $k=i$.


Sample Input 1

10
1 1 2 1 2 5 5 5 1

Sample Output 1

1
1
2
2
4
4
4
5
7
10

The following ways of choosing vertices should be counted:

  • $\{1\}$ when $k \ge 1$
  • $\{1,2,3\}$ when $k \ge 3$
  • $\{1,2,5\},\{1,3,5\}$ when $k \ge 5$
  • $\{1,2,4,5,6,7,8\}$ when $k \ge 8$
  • $\{1,2,4,5,6,7,9\},\{1,2,4,5,6,8,9\}$ when $k \ge 9$
  • $\{1,2,10\},\{1,3,10\},\{1,5,10\}$ when $k = 10$

Sample Input 2

1

Sample Output 2

1

If $N=1$, the $2$-nd line of the Input is empty.


Sample Input 3

10
1 2 3 4 5 6 7 8 9

Sample Output 3

1
1
1
1
1
1
1
1
1
1

Sample Input 4

13
1 1 1 2 2 2 3 3 3 4 4 4

Sample Output 4

1
1
2
4
4
4
4
4
7
13
13
19
31

先考虑如果不带实时询问怎么做?定义 \(dp_{i,j}\) 为以 \(i\) 为节点,深度为 \(j\) 的导出完全二叉树有多少个。发现 \(j\) 是 \(logn\) 级别的,因为一个 \(j\) 层完全二叉树的节点数量是 \(2^j\) 级别,而节点数量要 \(\le n\)。

用 \(son\) 表示 \(i\) 的所有儿子的集合, 初始化 \(dp_{i,0}=1\)$$dp_{i,j}=\sum\limits_{v1\in son}\sum\limits_{v2>v1,v2\in son}dp_{v1,j-1}\times dp_{v2,j-1}$$

这个可以化简为 $$(\sum\limits_{v\in son}dp_{v,j-1})^2-\sum\limits_{v\in son}dp_{v,j-1}^2$$

这个东西就可以实现树上 \(O(1)\) 转移了,最终答案为 \(\sum\limits_{j=0}^{logn}dp_{1,j}\),总复杂度 \(O(nlogn)\)

现在要求加点,询问。那么思路很简单,首先如果一个点的层数大过 \(logn\),他影响不到答案。然后考虑不断往上爬,去更改会改变的答案。

要直接维护 \(dp\) 值不容易,考虑维护所有 \(dp\) 值的和还有平方和,有这两个更改我们可以推出 \(dp\) 值的更改。然后发现,如果现在加入点 \(x\) 的时候,点 \(y\) 与点 \(x\) 的层数差为 \(a\),那么只有 \(dp_{y,a}\) 有可能更改,加上 \(x\) 的层数 \(\le logn\),所以这样子改的复杂度是 \(O(logn)\) 的。具体更改时就是减去旧的加上新的就行了。

#include<cstdio>
const int N=3e5+5,P=998244353,inv2=499122177;
typedef long long LL;
long long s[N][25],f[N][25],dp[N][25],ans,dep[N];//s表示和,f表示平方和
int n,k,fa[N];
void dfs(int x,int y,LL a,LL b)//a表示原来的,b表示新的
{
LL k=dp[x][y];
(s[x][y]+=b-a+P)%=P;
(f[x][y]+=b*b%P-a*a%P+P)%=P;
dp[x][y]=(s[x][y]*s[x][y]%P-f[x][y]+P)*inv2%P;
if(x-1)
dfs(fa[x],y+1,k,dp[x][y]);
}
int main()
{
scanf("%d",&n);
dp[1][0]=1;
puts("1");
for(int i=2;i<=n;i++)
{
scanf("%d",fa+i),dep[i]=dep[fa[i]]+1;
f[i][0]=dp[i][0]=s[i][0]=1;
if(dep[i]<=20)
dfs(fa[i],1,0,1);
// puts("qzmakioi");
ans=0;
for(int j=0;j<=20;j++)
(ans+=dp[1][j])%=P;
printf("%lld\n",ans);
}
}

[ABC264Ex] Perfect Binary Tree的更多相关文章

  1. Types of Binary Tree

    Complete Binary Tree According to wiki, A complete binary tree is a binary tree in which every level ...

  2. BFS广度优先 vs DFS深度优先 for Binary Tree

    https://www.geeksforgeeks.org/bfs-vs-dfs-binary-tree/ What are BFS and DFS for Binary Tree? A Tree i ...

  3. [LeetCode] 543. Diameter of Binary Tree 二叉树的直径

    Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...

  4. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  5. Leetcode 笔记 110 - Balanced Binary Tree

    题目链接:Balanced Binary Tree | LeetCode OJ Given a binary tree, determine if it is height-balanced. For ...

  6. Leetcode, construct binary tree from inorder and post order traversal

    Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...

  7. [LeetCode] Find Leaves of Binary Tree 找二叉树的叶节点

    Given a binary tree, find all leaves and then remove those leaves. Then repeat the previous steps un ...

  8. [LeetCode] Verify Preorder Serialization of a Binary Tree 验证二叉树的先序序列化

    One way to serialize a binary tree is to use pre-oder traversal. When we encounter a non-null node, ...

  9. [LeetCode] Binary Tree Vertical Order Traversal 二叉树的竖直遍历

    Given a binary tree, return the vertical order traversal of its nodes' values. (ie, from top to bott ...

  10. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

随机推荐

  1. 移动优先与响应式Web设计

    1.加速度计-设备置向 2.下拉更新-Iscroll 3.滑动以得到更多选项-panel 4.Sketch a Search 雅虎 画圈搜索 5.<Tapeworthy> 移动用户的行为特 ...

  2. 混合开发模式是否可以在App备案制度下突围

    网站 ICP 备案已施行了很久,我们也非常清楚必须在进行 ICP 备案后,网站才能在大陆范围合法运营,并且用户可以通过域名正常访问网站. 但是月初出了新规,明年起,国内的 App 也要像网站一样进行备 ...

  3. Redis系列21:缓存与数据库的数据一致性讨论

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  4. Java程序员学vue3最好的方式就是搭建后台管理模板

    前言 作为Java程序员,vue3还是有必要学的,毕竟是国内最受欢迎的前端JS框架,你现在接手的项目,前端部分几乎都会和vue沾边,尤其是中小企业. vue3作为新的大版本,相较于vue2改动还是很多 ...

  5. MySQL中不同场景中排它锁的不同表现

    mysql5.7 Golang的gorm做的测试 最后结论如下: 按主键查询,只会锁查到的那条数据 按主键加其他字段查询同上, 按照非主键字段查询,查到查不到都会造成表锁 (以上的锁指排他锁) 排它锁 ...

  6. 20个最佳实践提升Terraform工作流程|Part 1

    Terraform 是管理基础设施及代码(IaC)最常用的工具之一,它能使我们安全且可预测地对基础设施应用更改.刚开始上手 Terraform 可能会感觉有些不容易,但很快就能对该工具有基本的了解,随 ...

  7. 图解 LeetCode 算法汇总——二分查找

    二分查找(Binary Search)是一种在有序数组中查找特定元素的高效算法.它的基本思想是将目标值与数组中间的元素进行比较,如果目标值小于中间元素,则在数组的左半部分继续查找,否则在右半部分查找, ...

  8. QFluentWidgets: 基于 C++ Qt 的 Fluent Design 组件库

    简介 QFluentWidgets 是一个基于 Qt 的 Fluent Designer 组件库,内置超过 150 个开箱即用的 Fluent Designer 组件,支持亮暗主题无缝切换和自定义主题 ...

  9. 其它——MyCat实现分库分表

    文章目录 MyCat实现分库分表 一 开源数据库中间件-MyCat 二 MyCat简介 三 MyCat下载及安装 3.1 MySQL安装与启动 3.2使用docker启动多个数据库 3.3 MyCat ...

  10. js数据结构--数组

    <!DOCTYPE html> <html> <head> <title></title> </head> <body&g ...