#李超线段树 or 斜率优化+CDQ分治#洛谷 4655 [CEOI2017]Building Bridges
分析
列出方程即为\(dp[i]=\min\{dp[j]+(h[i]-h[j])^2+s[i-1]-s[j]\}\)
\(dp[j]+h[j]^2-s[j]=2*h[i]*h[j]+dp[i]-s[i-1]-h[i]^2\)
那这就是一个斜率为\(2*h[i]\),截距为\(dp[i]-s[i-1]-h[i]^2\)的直线
那要使截距尽量小,考虑用李超线段树解决
否则由于\(h[i]\)不具有单调性,考虑CDQ分治,第一维是时间,第二维是\(h\),斜率优化做
代码(李超线段树)
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
typedef long long lll;
const int N=100011,M=1000011;
struct rec{lll a,b;}line[N];
lll h[N],s[N],dp[N]; int p[N*40],n;
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline void print(lll ans){
if (ans<0) putchar('-'),ans=-ans;
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline lll calc(int t,int x){return line[t].a*x+line[t].b;}
inline signed either(int t1,int t2,int x){return calc(t1,x)<calc(t2,x)?t1:t2;}
inline void update(int k,int l,int r,int x,int y,int z){
rr int mid=(l+r)>>1;
if (x<=l&&r<=y){
if (!p[k]) {p[k]=z; return;}
rr lll la=calc(p[k],l),lb=calc(z,l);
rr lll ra=calc(p[k],r),rb=calc(z,r);
if (la<=lb&&ra<=rb) return;
if (la>=lb&&ra>=rb){p[k]=z; return;}
rr double pos=(line[p[k]].b-line[z].b)*1.0/(line[z].a-line[p[k]].a);
if (la>=lb){
if (pos<=mid) update(k<<1,l,mid,x,y,z);
else update(k<<1|1,mid+1,r,x,y,p[k]),p[k]=z;
}else{
if (pos>mid) update(k<<1|1,mid+1,r,x,y,z);
else update(k<<1,l,mid,x,y,p[k]),p[k]=z;
}
return;
}
if (x<=mid) update(k<<1,l,mid,x,y,z);
if (mid<y) update(k<<1|1,mid+1,r,x,y,z);
}
inline signed query(int k,int l,int r,int x){
if (l==r) return p[k];
rr int mid=(l+r)>>1;
if (x<=mid) return either(p[k],query(k<<1,l,mid,x),x);
else return either(p[k],query(k<<1|1,mid+1,r,x),x);
}
signed main(){
n=iut(),line[0]=(rec){0,1000000000000000000ll};
for (rr int i=1;i<=n;++i) h[i]=iut();
for (rr int i=1;i<=n;++i) s[i]=s[i-1]+iut();
dp[1]=0,line[1]=(rec){-h[1]<<1,h[1]*h[1]-s[1]},update(1,0,M,0,M,1);
for (rr int i=2;i<=n;++i){
dp[i]=h[i]*h[i]+s[i-1]+calc(query(1,0,M,h[i]),h[i]);
line[i]=(rec){-h[i]<<1,dp[i]+h[i]*h[i]-s[i]},update(1,0,M,0,M,i);
}
return !printf("%lld",dp[n]);
}
代码(斜率优化)
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define rr register
using namespace std;
typedef long long lll;
const int N=100011; const lll inf=1ll<<60;
int X[N],h[N],a[N],n,b[N],q[N]; lll s[N],dp[N],Y[N];
inline signed iut(){
rr int ans=0,f=1; rr char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans*f;
}
inline lll O(int x){return 1ll*x*x;}
inline lll min(lll a,lll b){return a<b?a:b;}
bool cmp(int x,int y){return h[x]<h[y];}
inline double slope(int i,int j){return (X[i]==X[j])?(Y[j]>=Y[i]?inf:-inf):((double)(Y[j]-Y[i])/(X[j]-X[i]));}
inline void cdq(int l,int r){
if (l==r){
Y[a[l]]=dp[a[l]]+O(h[a[l]])-s[a[l]];
return;
}
rr int mid=(l+r)>>1,i1=l,j1=mid+1;
for (rr int i=l;i<=r;++i)
if (a[i]<=mid) b[i1++]=a[i];
else b[j1++]=a[i];
for (rr int i=l;i<=r;++i) a[i]=b[i];
cdq(l,mid);
rr int head=1,tail=0,t=l-1;
for (rr int i=l;i<=mid;++i){
while (head<tail&&slope(q[tail-1],q[tail])>=slope(q[tail],a[i])) --tail;
q[++tail]=a[i];
}
for (rr int i=mid+1,I=a[i];i<=r;I=a[++i]){
while (head<tail&&slope(q[head],q[head+1])<=2*h[I]) ++head;
if (head<=tail) dp[I]=min(dp[I],dp[q[head]]+O(h[I]-h[q[head]])+s[I-1]-s[q[head]]);
}
cdq(mid+1,r);
for (i1=l,j1=mid+1;i1<=mid&&j1<=r;)
if (X[a[i1]]<X[a[j1]]) b[++t]=a[i1++];
else b[++t]=a[j1++];
while (i1<=mid) b[++t]=a[i1++];
while (j1<=r) b[++t]=a[j1++];
for (rr int i=l;i<=r;++i) a[i]=b[i];
}
signed main(){
n=iut(),memset(dp,0x3f,sizeof(dp));
for (rr int i=1;i<=n;++i) h[i]=iut();
for (rr int i=1;i<=n;++i) s[i]=s[i-1]+iut();
for (rr int i=1;i<=n;++i) X[i]=h[i],a[i]=i;
sort(a+1,a+1+n,cmp),dp[1]=0,cdq(1,n);
return !printf("%lld",dp[n]);
}
#李超线段树 or 斜率优化+CDQ分治#洛谷 4655 [CEOI2017]Building Bridges的更多相关文章
- 洛谷.4655.[CEOI2017]Building Bridges(DP 斜率优化 CDQ分治)
LOJ 洛谷 \(f_i=s_{i-1}+h_i^2+\min\{f_j-s_j+h_j^2-2h_i2h_j\}\),显然可以斜率优化. \(f_i-s_{i-1}-h_i^2+2h_ih_j=f_ ...
- 【BZOJ3672】【NOI2014】购票(线段树,斜率优化,动态规划)
[BZOJ3672][NOI2014]购票(线段树,斜率优化,动态规划) 题解 首先考虑\(dp\)的方程,设\(f[i]\)表示\(i\)的最优值 很明显的转移\(f[i]=min(f[j]+(de ...
- BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治
BZOJ_3963_[WF2011]MachineWorks_斜率优化+CDQ分治 Description 你是任意性复杂机器公司(Arbitrarily Complex Machines, ACM) ...
- 「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数
「线段树」「单点修改」洛谷P1198 [JSOI2008]最大数 题面描述 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作. 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数, ...
- [Noi2014]购票 BZOJ3672 点分治+斜率优化+CDQ分治
Description 今年夏天,NOI在SZ市迎来了她30周岁的生日.来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会.全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的 ...
- 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 3396 Solved: 1434[Submit][Sta ...
- BZOJ3963 WF2011MachineWorks(动态规划+斜率优化+cdq分治)
按卖出时间排序后,设f[i]为买下第i台机器后的当前最大收益,则显然有f[i]=max{f[j]+gj*(di-dj-1)+rj-pi},且若此值<0,应设为-inf以表示无法购买第i台机器. ...
- bzoj1492/luogu4027 货币兑换 (斜率优化+cdq分治)
设f[i]是第i天能获得的最大钱数,那么 f[i]=max{在第j天用f[j]的钱买,然后在第i天卖得到的钱,f[i-1]} 然后解一解方程什么的,设$x[j]=\frac{F[j]}{A[j]*Ra ...
- [BZOJ1492][NOI2007]货币兑换Cash(斜率优化+CDQ分治)
1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 5838 Solved: 2345[Submit][Sta ...
- 【BZOJ2726】[SDOI2012]任务安排 斜率优化+cdq分治
[BZOJ2726][SDOI2012]任务安排 Description 机器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若 ...
随机推荐
- 一个自定义可扩展的检测变量的函数typeofIt();
自定义方法typeofIt()是用来判断传入的变量或属性是什么类型的; 1.如果是基础类型变量则返回代表基础变量类型小写格式的字符串及一些简易说明; 2.如果是对象类型变量则返回结尾带有"O ...
- Lucene介绍与使用
Lucene介绍与使用 原文链接:https://blog.csdn.net/weixin_42633131/article/details/82873731 不选择使用Lucene的6大原因? 原文 ...
- unrar命令
解压提取RAR压缩文件 语法格式:unrar 参数 压缩包 常用参数 e 将文件解压缩到当前目录 o - 不要覆盖现有文件 l 显示文件列表 p 设置压缩包密码 p 将文件显示到标准输出 r 递归处理 ...
- django中信号
# 信号的理解 在某个行为进行的某个阶段给这个行为添加一个附带的行为 # 相关api ## 数据表 pre_init # django的model执行其构造方法前,自动触发 post_init # d ...
- 【LeetCode贪心#06】加油站(股票买卖变种)
加油站 力扣题目链接(opens new window) 在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升. 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 ...
- 【Azure Spring Cloud】部署Azure spring cloud 失败
问题描述 使用Azure CLI指令部署Azure Spring Cloud项目失败,错误消息提示没有安装"azure.storage.blob"模块 问题分析 根据错误提示,是p ...
- 10、zookeeper的leader选举
leader选举 服务器状态 looking:寻找leader状态.当服务器处于该状态时,它会认为当前集群中没有leader,因此需要进入leader选举状态 following:跟随着状态.表明当前 ...
- beanstalkd轻量级消息队列的安装
1.版本介绍 CentOS:CentOS Linux release 7.9.2009 (Core) beanstalkd:beanstalkd 1.10 2.安装 (1)先安装epel-releas ...
- [.Net 6]写一个简单的文件上传控件后端
此项目是配合上一篇文章[Vue]写一个简单的文件上传控件 - 林晓lx - 博客园 (cnblogs.com) 的后端程序,使用.Net 6项目框架搭建,开发前请安装Visual Studio 20 ...
- [.Net]使用Soa库+Abp搭建微服务项目框架(二):面向服务体系的介绍
上一章我们建立了一个典型的面向领域设计的Abp小项目,如果按照常规的开发方式,会遇到什么问题呢? 先来完善一下这个小项目,在定义好各实体类后,运行Miguration并向数据库里写入一些初始数据. ...