题目


分析

首先考虑如果修改操作都是单点修改怎么做,

以第一种修改为例那么就是

\[\left[\begin{matrix}A\\B\\C\\1\end{matrix}\right] \times \left[\begin{matrix}1,0,0,0\\1,1,0,0\\0,0,1,0\\0,0,0,1\end{matrix}\right]=\left[\begin{matrix}A+B\\B\\C\\1\end{matrix}\right]
\]

同理其它操作也能通过乘矩阵来维护,

考虑区间修改时询问为求和,那么只需要开懒标记即可

时间复杂度 \(O(4^3Q\log_2{n})\)


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=250011,mod=998244353;
typedef long long lll; int n;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
struct maix{
lll p[4][4];
inline maix operator *(const maix &t)const{
rr maix _t;
for (rr int i=0;i<4;++i)
for (rr int j=0;j<4;++j){
_t.p[i][j]=0;
for (rr int k=0;k<4;++k)
_t.p[i][j]+=p[i][k]*t.p[k][j];
_t.p[i][j]%=mod;
}
return _t;
}
}u,lazy[N<<2];
struct Four{
lll p[4];
inline Four operator +(const Four &t)const{
rr Four _t;
for (rr int i=0;i<4;++i)
_t.p[i]=p[i]+t.p[i]>=mod?p[i]+t.p[i]-mod:p[i]+t.p[i];
return _t;
}
}ANS,w[N<<2];
inline bool Is_Unit(maix A){
for (rr int i=0;i<4;++i)
for (rr int j=0;j<4;++j)
if (A.p[i][j]!=u.p[i][j]) return 0;
return 1;
}
inline Four mul(Four A,maix B){
rr Four C;
for (rr int i=0;i<4;++i){
C.p[i]=0;
for (rr int j=0;j<4;++j)
C.p[i]+=A.p[j]*B.p[j][i];
C.p[i]%=mod;
}
return C;
}
inline void pdown(int k){
w[k<<1]=mul(w[k<<1],lazy[k]);
lazy[k<<1]=lazy[k<<1]*lazy[k];
w[k<<1|1]=mul(w[k<<1|1],lazy[k]);
lazy[k<<1|1]=lazy[k<<1|1]*lazy[k];
lazy[k]=u;
}
inline void build(int k,int l,int r){
lazy[k]=u;
if (l==r){
for (rr int i=0;i<3;++i)
w[k].p[i]=iut();
w[k].p[3]=1;
return;
}
rr int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
w[k]=w[k<<1]+w[k<<1|1];
}
inline void update(int k,int l,int r,int x,int y,maix z){
if (l==x&&r==y) {w[k]=mul(w[k],z),lazy[k]=lazy[k]*z; return;}
rr int mid=(l+r)>>1; if (!Is_Unit(lazy[k])) pdown(k);
if (y<=mid) update(k<<1,l,mid,x,y,z);
else if (x>mid) update(k<<1|1,mid+1,r,x,y,z);
else update(k<<1,l,mid,x,mid,z),update(k<<1|1,mid+1,r,mid+1,y,z);
w[k]=w[k<<1]+w[k<<1|1];
}
inline Four query(int k,int l,int r,int x,int y){
if (l==x&&r==y) return w[k];
rr int mid=(l+r)>>1; if (!Is_Unit(lazy[k])) pdown(k);
if (y<=mid) return query(k<<1,l,mid,x,y);
else if (x>mid) return query(k<<1|1,mid+1,r,x,y);
else return query(k<<1,l,mid,x,mid)+query(k<<1|1,mid+1,r,mid+1,y);
}
signed main(){
for (rr int i=0;i<4;++i) u.p[i][i]=1;
n=iut(),build(1,1,n);
for (rr int Q=iut();Q;--Q){
rr int opt=iut(),l=iut(),r=iut(),w=0; rr maix z=u;
if (opt<7){
if (opt>3) w=iut();
switch (opt){
case 1:{
z.p[1][0]=1;
break;
}
case 2:{
z.p[2][1]=1;
break;
}
case 3:{
z.p[0][2]=1;
break;
}
case 4:{
z.p[3][0]=w;
break;
}
case 5:{
z.p[1][1]=w;
break;
}
case 6:{
z.p[2][2]=0,z.p[3][2]=w;
break;
}
}
update(1,1,n,l,r,z);
}
else{
ANS=query(1,1,n,l,r);
for (rr int i=0;i<3;++i)
print(ANS.p[i]),putchar(i==2?10:32);
}
}
return 0;
}

#线段树,矩阵乘法#洛谷 7453 [THUSCH2017] 大魔法师的更多相关文章

  1. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  2. hdu 5068(线段树+矩阵乘法)

    矩阵乘法来进行所有路径的运算, 线段树来查询修改. 关键还是矩阵乘法的结合律. Harry And Math Teacher Time Limit: 5000/3000 MS (Java/Others ...

  3. 【对不同形式矩阵的总结】WC 2009 最短路径问题(线段树+矩阵乘法)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4150 ​ 一个 \(6\times n\) 的网格图,每个格点有一个初始权值.有两种操作: 修改一个格子的权值 求 ...

  4. MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)

    题目链接 传送门 题意 在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地. 现在有\(q\)次操作 ...

  5. CF718C Sasha and Array 线段树 + 矩阵乘法

    有两个操作: 将 $[l,r]$所有数 + $x$ 求 $\sum_{i=l}^{r}fib(i)$ $n=m=10^5$   直接求不好求,改成矩阵乘法的形式:  $a_{i}=M^x\times ...

  6. Wannafly Winter Camp Day8(Div1,onsite) E题 Souls-like Game 线段树 矩阵乘法

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog @ Problem:传送门  Portal  原题目描述在最下面.  简单的 ...

  7. LOJ2980 THUSC2017大魔法师(线段树+矩阵乘法)

    线段树每个节点维护(A,B,C,len)向量,操作即是将其乘上一个矩阵. #include<iostream> #include<cstdio> #include<cma ...

  8. HDU 5068 Harry And Math Teacher 线段树+矩阵乘法

    题意: 一栋楼有n层,每一层有2个门,每层的两个门和下一层之间的两个门之间各有一条路(共4条). 有两种操作: 0 x y : 输出第x层到第y层的路径数量. 1 x y z : 改变第x层 的 y门 ...

  9. [tsA1490][2013中国国家集训队第二次作业]osu![概率dp+线段树+矩阵乘法]

    这样的题解只能舔题解了,,,qaq 清橙资料里有.. #include <iostream> #include <cstdio> #include <cstdlib> ...

  10. SP1716 GSS3(线段树+矩阵乘法)

    Code: #include <bits/stdc++.h> #define N 50001 #define ll long long #define lson now<<1 ...

随机推荐

  1. 在Hexo中引入本地图片的实现

    实现步骤 第一步:修改项目根目录下的_config.yml文件参数post_asset_folder值为true. # 开始使用本地静态资源 post_asset_folder: true 第二步:安 ...

  2. nginx中使用perl脚本来定制一些请求转发等等

    http://t.zoukankan.com/carriezhangyan-p-9359708.html https://blog.csdn.net/weixin_28917223/article/d ...

  3. django学习第七天---创建多表结构,创建第三张表的三种方式,创建模型类时的一些元信息配置,多表增加

    图书管理系统作业知识点整理 知识点1: print(request.POST.dict())#dict()方法能将QueryDict类型数据转换为普通字典类型数据 传数据时,可以用**{}打散的方式来 ...

  4. django中使用redis管道

    管道(事务),要是都成功则成功,失败一个全部失败 原理:将数据操作放在内存中,只有成功后,才会一次性全部放入redis 记住,redis中的管道可以开启事务处理,但是并没有回滚这一说法!跟mysql中 ...

  5. django中model聚合使用

    from django.db.models.functions import Cast, Coalesce, Concat, ConcatPair, Greatest # Cast,类型转换 q1 = ...

  6. 【Azure Redis 缓存】在Azure Redis中,如何限制只允许Azure App Service访问?

    问题描述 在Azure Redis服务中,如何实现只允许Azure App Service访问呢? 问题解答 Azure Redis 开启 防火墙的功能,并在防火墙中添加上App Service的出口 ...

  7. 【Azure 应用服务】[App Service For Linux(Function) ] Python ModuleNotFoundError: No module named 'MySQLdb'

    问题描述 在使用Azure Function创建新的Python Function时,使用MySQLdb连接数据库时候出现 ModuleNotFoundError: No module named ' ...

  8. Codeforces Round 924 (Div. 2)B. Equalize(思维+双指针)

    目录 题面 链接 题意 题解 代码 题面 链接 B. Equalize 题意 给一个数组\(a\),然后让你给这个数组加上一个排列,求出现最多的次数 题解 赛时没过不应该. 最开始很容易想到要去重,因 ...

  9. Codeforces Round #851 (Div. 2) 题解

    Codeforces Round #851 (Div. 2) 题解 A. One and Two 取 \(\log_2\),变成加号,前缀和枚举 \(s[i]=\dfrac{s[n]}{2}\). B ...

  10. Zabbix“专家坐诊”第182期问答汇总

    问题一: Q:像烽火.浪潮这种没有ilo的设备怎么监控他们的硬件状态呢? A:如果没有ilo,可以使用其他硬件监控软件,例如HP Insight Manager.IBM Director.Dell O ...