Initialization of deep networks
Initialization of deep networks
As we all know, the solution to a non-convex optimization algorithm (like stochastic gradient descent) depends on the initial values of the parameters. This post is about choosing initialization parameters for deep networks and how it affects the convergence. We will also discuss the related topic of vanishing gradients.
First, let's go back to the time of sigmoidal activation functions and initialization of parameters using IID Gaussian or uniform distributions with fairly arbitrarily set variances. Building deep networks was difficult because of exploding or vanishing activations and gradients. Let's take activations first: If all your parameters are too small, the variance of your activations will drop in each layer. This is a problem if your activation function is sigmoidal, since it is approximately linear close to 0. That is, you gradually lose your non-linearity, which means there is no benefit to having multiple layers. If, on the other hand, your activations become larger and larger, then your activations will saturate and become meaningless, with gradients approaching 0.
Let us consider one layer and forget about the bias. Note that the following analysis and conclussion is taken from Glorot and Bengio[1]. Consider a weight matrix W∈Rm×n, where each element was drawn from an IID Guassian with variance Var(W). Note that we are a bit abusive with notation letting W denote both a matrix and a univariate random variable. We also assume there is no correlation between our input and our weights and both are zero-mean. If we consider one filter (row) in W, say w (a random vector), then the variance of the output signal over the input signal is:
As we build a deep network, we want the variance of the signal going forward in the network to remain the same, thus it would be advantageous if nVar(W)=1. The same argument can be made for the gradients, the signal going backward in the network, and the conclusion is that we would also like mVar(W)=1. Unless n=m, it is impossible to sastify both of these conditions. In practice, it works well if both are approximately satisfied. One thing that has never been clear to me is why it is only necessary to satisfy these conditions when picking the initialization values of W. It would seem that we have no guarantee that the conditions will remain true as the network is trained.
Nevertheless, this Xavier initialization (after Glorot's first name) is a neat trick that works well in practice. However, along came rectified linear units (ReLU), a non-linearity that is scale-invariant around 0 and does not saturate at large input values. This seemingly solved both of the problems the sigmoid function had; or were they just alleviated? I am unsure of how widely used Xavier initialization is, but if it is not, perhaps it is because ReLU seemingly eliminated this problem.
However, take the most competative network as of recently, VGG[2]. They do not use this kind of initialization, although they report that it was tricky to get their networks to converge. They say that they first trained their most shallow architecture and then used that to help initialize the second one, and so forth. They presented 6 networks, so it seems like an awfully complicated training process to get to the deepest one.
A recent paper by He et al.[3] presents a pretty straightforward generalization of ReLU and Leaky ReLU. What is more interesting is their emphasis on the benefits of Xavier initialization even for ReLU. They re-did the derivations for ReLUs and discovered that the conditions were the same up to a factor 2. The difficulty Simonyan and Zisserman had training VGG is apparently avoidable, simply by using Xavier intialization (or better yet the ReLU adjusted version). Using this technique, He et al. reportedly trained a whopping 30-layer deep network to convergence in one go.
Another recent paper tackling the signal scaling problem is by Ioffe and Szegedy[4]. They call the change in scale internal covariate shift and claim this forces learning rates to be unnecessarily small. They suggest that if all layers have the same scale and remain so throughout training, a much higher learning rate becomes practically viable. You cannot just standardize the signals, since you would lose expressive power (the bias disappears and in the case of sigmoids we would be constrained to the linear regime). They solve this by re-introducing two parameters per layer, scaling and bias, added again after standardization. The training reportedly becomes about 6 times faster and they present state-of-the-art results on ImageNet. However, I'm not certain this is the solution that will stick.
I reckon we will see a lot more work on this frontier in the next few years. Especially since it also relates to the -- right now wildly popular -- Recurrent Neural Network (RNN), which connects output signals back as inputs. The way you train such network is that you unroll the time axis, treating the result as an extremely deep feedforward network. This greatly exacerbates the vanishing gradient problem. A popular solution, called Long Short-Term Memory (LSTM), is to introduce memory cells, which are a type of teleport that allows a signal to jump ahead many time steps. This means that the gradient is retained for all those time steps and can be propagated back to a much earlier time without vanishing.
This area is far from solved, and until then I think I will be sticking to Xavier initialization. If you are using Caffe, the one take-away of this post is to use the following on all your layers:
weight_filler {
type: "xavier"
}
References
X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in International conference on artificial intelligence and statistics, 2010, pp. 249–256.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. [pdf]
K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” arXiv:1502.01852 [cs], Feb. 2015. [pdf]
S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Feb. 2015. [pdf]
Related Posts
Initialization of deep networks的更多相关文章
- [Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint
目录 概 主要内容 LSGD Box 初始化 Box for Resnet 代码 Cyr E C, Gulian M, Patel R G, et al. Robust Training and In ...
- Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...
- 基于pytorch实现HighWay Networks之Train Deep Networks
(一)Highway Networks 与 Deep Networks 的关系 理论实践表明神经网络的深度是至关重要的,深层神经网络在很多方面都已经取得了很好的效果,例如,在1000-class Im ...
- 论文笔记:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:ht ...
- 论文笔记:Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ICML 2017 Paper:https://arxiv.org/ ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 深度学习材料:从感知机到深度网络A Deep Learning Tutorial: From Perceptrons to Deep Networks
In recent years, there’s been a resurgence in the field of Artificial Intelligence. It’s spread beyo ...
- Deep Networks for Image Super-Resolution with Sparse Prior
深度学习中潜藏的稀疏表达 Deep Networks for Image Super-Resolution with Sparse Prior http://www.ifp.illinois.edu/ ...
- Training Very Deep Networks
Rupesh Kumar SrivastavaKlaus Greff ̈J urgenSchmidhuberThe Swiss AI Lab IDSIA / USI / SUPSI{rupesh, k ...
随机推荐
- ROWNUMBER() OVER( PARTITION BY COL1 ORDER BY COL2)用法
今天在使用多字段去重时,由于某些字段有多种可能性,只需根据部分字段进行去重,在网上看到了rownumber() over(partition by col1 order by col2)去重的方法,很 ...
- mvc4中的 webapi 的使用方式
目录 一:简单介绍什么是Web api 二:怎么定义的 Post Get Put 和 Delete 三:简单使用,直接从前台传递一个类到后台接收 四:其他获取值的方式 一:简单介绍什么是Web api ...
- 流程引擎Activiti系列:如何将kft-activiti-demo-no-maven改用mysql数据库
kft-activiti-demo-no-maven这个工程默认使用h2数据库,这是一个内存数据库,每次启动之后都要重新对数据库做初始化,很麻烦,所以决定改用mysql,主要做3件事情: 1)在mys ...
- [CareerCup] 2.3 Delete Node in a Linked List 删除链表的节点
2.3 Implement an algorithm to delete a node in the middle of a singly linked list, given only access ...
- [CareerCup] 6.5 Drop Eggs 扔鸡蛋问题
6.5 There is a building of 100 floors. If an egg drops from the Nth floor or above, it will break. I ...
- 20135202闫佳歆--week 8 课本第4章学习笔记
第四章 进程调度 一.多任务 多任务操作系统就是能同时并发的交互执行多个进程的操作系统. 多任务操作系统使多个进程处于堵塞或者睡眠状态,实际不被投入执行,这些任务尽管位于内存,但是并不处于可运行状态. ...
- IOS 应用生命周期
*当第一次运行程序时候:(active)didFinishLaunchingWithOptions(加载完毕)->applicationDidBecomeActive(获取焦点)*当点击home ...
- grootJs属性扩展 groot.bindExtend
index12.html <html><head> <title>grootJs属性扩展 groot.bindExtend</title> <sc ...
- 图解NodeJS【基于事件、回调的单线程高性能服务器】原理
刚开始了解Node感觉很吊,各种说高性能,可是一直不理解为什么单线程会比多线程快?为什么异步IO比非阻塞IO快?因此,本篇在阅读相关书籍后,根据自己的理解,整理此文,如有错误,仅代表理论不精,必当修改 ...
- UIToolbar 如何调整里面的按钮位置
可以在Bar Button Item后面填个Fixed Space Bar Button Item 或者Flexible Space Bar Button Item,然后再在后面加上下一个Bar Bu ...