codevs 1574 广义斐波那契数列

 时间限制: 1 s
 空间限制: 256000 KB
 题目等级 : 钻石 Diamond
 
题目描述 Description

广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。

输入描述 Input Description

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

输出描述 Output Description

输出包含一行一个整数,即an除以m的余数。

样例输入 Sample Input

1 1 1 1 10 7

样例输出 Sample Output

6

数据范围及提示 Data Size & Hint

数列第10项是55,除以7的余数为6。

 /*
注意:矩阵快速幂是把构造的矩阵乘^n次(根据同余原理,计算中是可以%的)后,再与原矩阵想乘,把原矩阵做n次快速幂是错误的*/
/*
联系一下int的快速幂:
ans=1;
while(n)//求b^n
{
if(n&1)
ans=ans*b;-------1
n>>=1;
b=b*b;---------2
}
就是把1,2两句中的相乘都用“三变量法”来做(矩阵的特殊性,不能把结果直接存进原矩阵中)。
*/
 #include<iostream>
using namespace std;
#include<cstdio>
typedef long long ll;
ll n,m;
ll p,q,a1,a2;
ll jz[][],b[][],c[][];/*注意以后遇到ll与int相乘的题目,把int的变量直接设为ll*/
int main()
{
cin>>p>>q>>a1>>a2;
cin>>n>>m;n-=;
b[][]=jz[][]=;b[][]=jz[][]=q;
b[][]=jz[][]=;b[][]=jz[][]=p; while(n)
{
if(n&)
{
for(int i=;i<=;++i)
for(int j=;j<=;++j)
for(int k=;k<=;++k)
c[i][j]=(c[i][j]+jz[i][k]*b[k][j]%m)%m;
for(int i=;i<=;++i)
for(int j=;j<=;++j)
jz[i][j]=c[i][j],c[i][j]=;
}
n>>=;
for(int i=;i<=;++i)
for(int j=;j<=;++j)
for(int k=;k<=;++k)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=;i<=;++i)
for(int j=;j<=;++j)
b[i][j]=c[i][j],c[i][j]=;
} cout<<(a2*jz[][]%m+a1*jz[][]%m)%m;/*注意这里要把a1,a2乘以原来的那个01向量,而不是pq向量,因为矩阵计算了n-2次,如果乘以pq向量的话,计算出的是an+1*/
return ;
}

矩阵乘法快速幂 codevs 1574 广义斐波那契数列的更多相关文章

  1. Codevs 1574 广义斐波那契数列(矩阵乘法)

    1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...

  2. (矩阵快速幂)51NOD 1242斐波那契数列的第N项

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  3. 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列

    [题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...

  4. codevs1574广义斐波那契数列

    1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond     题目描述 Description 广义的斐波那契数列是指形如an=p* ...

  5. Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)

    Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...

  6. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  7. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  8. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  9. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

随机推荐

  1. AC自动机---病毒侵袭

    HDU 2896 题目网址: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110773#problem/B Description 当太 ...

  2. php正规则表达式的语法

    界定符的三种书写方式: regexpal工具(正规则表达调试工具): 可以实时显示效果出来. 原子: 可见原子,即uincode编码表中的某个字符 不可见原子: 为了避免编码问题导致匹配不正确,要把文 ...

  3. redis3.0 集群实战3 - java编程实战

    本文主要描述使用jedis进行redis-cluster操作   jedis jedis是redis官方推荐使用的java redis客户端,github地址为,https://github.com/ ...

  4. 一道灵活的css笔试题

    今天在网上看到一css笔试题,乍一看很简单,实则内部暗藏玄机,题目大概是:九宫格,每格长宽50px,边框宽度5px,鼠标经过边框变红,效果如下: 鼠标路过时: 以下是代码(如有不足之处望多加指正) & ...

  5. ruby 操作数据库语句

    1.多对多 user role u = User.first role = Role.first 插入 u.roles << role u.save 更新 u.roles = [] u.r ...

  6. 用QQ号登陆Sharepoint,研究到最后关头卡住了。大家发力呀

    此项目未完成,登陆不了SharePoint,大家研究吧,折腾吧..... 已经完成的部分有:已经可以获取到腾讯用户信息,如: Get Access Token===============access ...

  7. oracle断电重启之ORA-00600[4194]

    1.问题描述 Oracle服务器断电重启以后无法数据库无法正常连接,使用sqlplus envision/envision连接报错.常见的错误有以下这些: ORA-12518: TNS:listene ...

  8. Sublime Text 最佳插件列表(转)

    Package Control 安装方法 首先通过快捷键 ctrl+` 或者 View > Show Console 打开控制台,然后粘贴相应的 Python 安装代码. Sublime Tex ...

  9. 设计模式:模版模式(Template Pattern)-转

    模版模式 又叫模板方法模式,在一个方法中定义一个算法的骨架,而将一些步骤延迟到子类中.模板方法使得子类可以在不改变算法结构的情冴下,重新定义算法中的某些步骤. 我们使用冲泡咖啡和冲泡茶的例子 加工流程 ...

  10. CSS 包含选择器(九)

    一.包含选择器 包含选择器中前后两部分之间以空格隔开,根据左侧选择符指定的祖先元素,然后在该元素下寻找匹配右侧的选择侧符的下级元素 定义包含选择器时,必须保证在HTML结构中第一个对象能够包含第二个对 ...