POJ 1269 Intersecting Lines --计算几何
题意: 二维平面,给两条线段,判断形成的直线是否重合,或是相交于一点,或是不相交。
解法: 简单几何。
重合: 叉积为0,且一条线段的一个端点到另一条直线的距离为0
不相交: 不满足重合的情况下叉积为0
相交于一点: 直线相交的模板
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define pi acos(-1.0)
#define eps 1e-8
using namespace std;
#define N 100017 struct Point{
double x,y;
Point(double x=, double y=):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Circle{
Point c;
double r;
Circle(){}
Circle(Point c,double r):c(c),r(r) {}
Point point(double a) { return Point(c.x + cos(a)*r, c.y + sin(a)*r); }
void input() { scanf("%lf%lf%lf",&c.x,&c.y,&r); }
};
struct Line{
Point p;
Vector v;
double ang;
Line(){}
Line(Point p, Vector v):p(p),v(v) { ang = atan2(v.y,v.x); }
Point point(double t) { return Point(p.x + t*v.x, p.y + t*v.y); }
bool operator < (const Line &L)const { return ang < L.ang; }
};
int dcmp(double x) {
if(x < -eps) return -;
if(x > eps) return ;
return ;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); } bool OnSegment(Point P, Point A, Point B) {
return dcmp(Cross(A-P,B-P)) == && dcmp(Dot(A-P,B-P)) < ;
}
double DistanceToSeg(Point P, Point A, Point B)
{
if(A == B) return Length(P-A);
Vector v1 = B-A, v2 = P-A, v3 = P-B;
if(dcmp(Dot(v1, v2)) < ) return Length(v2);
if(dcmp(Dot(v1, v3)) > ) return Length(v3);
return fabs(Cross(v1, v2)) / Length(v1);
}
double DistanceToLine(Point P, Point A, Point B){
Vector v1 = B-A, v2 = P-A;
return fabs(Cross(v1,v2)) / Length(v1);
}
Point GetLineIntersection(Line A, Line B){
Vector u = A.p - B.p;
double t = Cross(B.v, u) / Cross(A.v, B.v);
return A.p + A.v*t;
} //data segment
//data ends int main()
{
Point A,B,C,D;
int n,i,j;
scanf("%d",&n);
{
puts("INTERSECTING LINES OUTPUT");
for(i=;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y);
scanf("%lf%lf%lf%lf",&C.x,&C.y,&D.x,&D.y);
Line L1 = Line(A,B-A);
Line L2 = Line(C,D-C);
if(dcmp(Cross(L1.v,L2.v)) == && dcmp(DistanceToLine(A,C,D)) == )
puts("LINE");
else if(dcmp(Cross(L1.v,L2.v)) == )
puts("NONE");
else
printf("POINT %.2f %.2f\n",GetLineIntersection(L1,L2).x,GetLineIntersection(L1,L2).y);
}
puts("END OF OUTPUT");
}
return ;
}
POJ 1269 Intersecting Lines --计算几何的更多相关文章
- POJ 1269 Intersecting Lines(判断两直线位置关系)
题目传送门:POJ 1269 Intersecting Lines Description We all know that a pair of distinct points on a plane ...
- POJ 1269 Intersecting Lines(计算几何)
题意:给定4个点的坐标,前2个点是一条线,后2个点是另一条线,求这两条线的关系,如果相交,就输出交点. 题解:先判断是否共线,我用的是叉积的性质,用了2遍就可以判断4个点是否共线了,在用斜率判断是否平 ...
- ●POJ 1269 Intersecting Lines
题链: http://poj.org/problem?id=1269 题解: 计算几何,直线交点 模板题,试了一下直线的向量参数方程求交点的方法. (方法详见<算法竞赛入门经典——训练指南> ...
- POJ 1269 - Intersecting Lines - [平面几何模板题]
题目链接:http://poj.org/problem?id=1269 Time Limit: 1000MS Memory Limit: 10000K Description We all know ...
- POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道
rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...
- poj 1269 Intersecting Lines
题目链接:http://poj.org/problem?id=1269 题目大意:给出四个点的坐标x1,y1,x2,y2,x3,y3,x4,y4,前两个形成一条直线,后两个坐标形成一条直线.然后问你是 ...
- 判断两条直线的位置关系 POJ 1269 Intersecting Lines
两条直线可能有三种关系:1.共线 2.平行(不包括共线) 3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, ...
- poj 1269 Intersecting Lines——叉积求直线交点坐标
题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...
- POJ 1269 Intersecting Lines (判断直线位置关系)
题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a li ...
随机推荐
- PHP学习笔记:通过curl实现采集网站内容
关于curl,请各位同学自行百度,我直接上案例. 首先开启你的curl拓展,在php.ini文件把curl拓展开启,即取消extension=php_curl.dll的分号. eg:利用curl采集网 ...
- rabbitmq学习笔记2 基本概念
官网:http://www.rabbitmq.com 参考:http://blog.csdn.net/column/details/rabbitmq.html 1 基本概念 rabbitmq se ...
- java service wrapper 级别为info导致内存剧增直至溢出
上周,公司某一环境发生java service wrapper内存剧增导致最后被自动killed的情况,经过分析,确定导致java service wrapper(后续简称wrapper)守护进程内存 ...
- jquery重置html form
很多时候在ajax提交或者对话框隐藏之后,我们希望重置默认值以便下次打开对话框时保持干净. 因为jquery选择器返回的是list,并且没有对此提供reset方法,所以需要针对单个元素进行reset. ...
- C++ 面向对象的三个特点--多态性(一)
C++的多态性定义 所谓多态性就是不同对象收到相同的消息产生不同的动作.通俗的说,多态性是指一个名字定义不同的函数,这些函数执行不同但又类似的操作,即用同样的接口访问功能不同的函数,从而实现“一个接口 ...
- 选择Web API还是WCF
ASP.NET WCF是.NET平台服务开发的一站式框架,那么为什么还要有ASP.NET Web API呢?简单来说,ASP.NET Web API的设计和构建只考虑了一件事情,那就是HTTP,而WC ...
- js判断用户的浏览器设备是移动端还是pc端
最近做的一个网站页面中需要根据用户的访问设备的不同来显示不同的页面样式,主要是判断移动设备还是电脑浏览器访问的. 下面给出js判断处理代码,以作参考. <script type="te ...
- android 类ios actionsheet效果
1.http://blog.csdn.net/zhaoxy_thu/article/details/17733389 2. https://github.com/ojhariddhish/action ...
- Android 正则表达式
1.相关知识链接 正则表达式语法 https://msdn.microsoft.com/zh-cn/library/ae5bf541(v=vs.80).aspx 正则表达式入门教程 http: ...
- Swift开发第一篇——异常处理及断言
本篇分两部分: 1.错误和异常处理 2.Swift 中的断言 1.错误和异常处理 在 OC 开发中,我们通常会将 error 置为 nil NSError *error; BOOL success = ...