【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元
如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值。
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const double eps=1e-9;
bool vis[503];
double f[503],a[503][503],ans[500*500];
int N,M,cnt=0,du[503],a1[500*500],a2[500*500];
double fabs(double x){return x>0?x:-x;}
int getint(){char c;while (!isdigit(c=getchar()));int a=c-'0';while(isdigit(c=getchar()))a=a*10+c-'0';return a;}
void prepare(){
for(int i=1;i<=M;++i){
a[a1[i]][a2[i]]+=1.0/du[a2[i]];
a[a2[i]][a1[i]]+=1.0/du[a1[i]];
}
for(int i=1;i<=N;++i)a[N][i]=0;
for(int i=1;i<N;++i)a[i][i]=-1.0;
a[1][N+1]=-1.0;a[N][N]=1.0;
}
void swapp(double &x,double &y){double z=x;x=y;y=z;}
void gauss(){
for(int i=1;i<=N;++i){
int now=i;
for(int j=i+1;j<=N;++j)if(fabs(a[j][i])>fabs(a[now][i]))now=j;
if (now!=i)for(int j=i;j<=N+1;++j)swapp(a[now][j],a[i][j]);
for(int j=i+1;j<=N;++j){
double t=a[j][i]/a[i][i];
for(int k=i;k<=N+1;++k)a[j][k]-=t*a[i][k];
}
}
for(int i=N;i>=1;--i){
for(int j=N;j>i;--j){
a[i][N+1]-=a[j][N+1]*a[i][j];
}a[i][N+1]/=a[i][i];
}
}
bool cmp(double a,double b){return a>b;}
int main(){
memset(a,0,sizeof(a));
memset(du,0,sizeof(du));
N=getint();M=getint();
for(int i=1;i<=M;++i){
a1[i]=getint();a2[i]=getint();
du[a1[i]]++;du[a2[i]]++;
}prepare();
gauss();
cnt=0;
for(int i=1;i<=M;++i){
ans[++cnt]=a[a1[i]][N+1]/du[a1[i]]+a[a2[i]][N+1]/du[a2[i]];
}
sort(ans+1,ans+M+1,cmp);
double sa=0;
for(int i=1;i<=M;++i) sa+=ans[i]*i*1.0;
printf("%.3lf\n",sa);
return 0;
}
这样就可以了
【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元的更多相关文章
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
- bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- [HNOI2013]游走 期望+高斯消元
纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- [luogu3232 HNOI2013] 游走 (高斯消元 期望)
传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- BZOJ3143 [Hnoi2013]游走 【高斯消元】
题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
- bzoj3143游走——期望+高斯消元
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望: 每条 ...
随机推荐
- NOIP2007 T2纪念品分组 解题报告-S.B.S.
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #inclu ...
- (新人的第一篇博客)树状数组中lowbit(i)=i&(-i) 的简单文字证明
第一次写博好激动o(≧v≦)o~~初一狗语无伦次还请多多指教 先了解树状数组http://blog.csdn.net/int64ago/article/details/7429868感觉这个前辈写 ...
- HDU 5083 Instruction --模拟
题意:给出汇编指令,解释出编码或者给出编码,解释出汇编指令. 解法:简单模拟,按照给出的规则一步一步来就好了,主要是注意“SET”的情况,还有要输出的东西最好放到最后一起输出,中间如果一旦不对就可以及 ...
- iOS数据本地持久化
p1:归档.Preference(NSUserDefault).沙盒存储 iOS开发中本地存储主要有三种形式 XML属性列表(plist)归档 Preference(偏好设置) NSKeyedAr ...
- Adivisor
1.Adivisor是一种特殊的Aspect,Advisor代表spring中的Aspect 2.区别:advisor只持有一个Pointcut和一个advice,而aspect可以多个pointcu ...
- 关于Java多态
什么是多态 同一个实现接口,使用不同的实例而执行不同的操作 子类转换成父类的规则: *将一个父类的引用指向一个子类对象时,称为上转型,自动进行类型转换 *此时通过父类引用变量调用的方法是子类覆盖或继承 ...
- delphi数组作为参数传值
在函数中如果数组的个数不定,可以使用开放数组参数 实参可以接受静态数组和动态数组 procedure p1(a:array of Byte); begin ShowMessage( IntToHex( ...
- 你都认识下面这些参数么?【Camera】
在调试的时候利用下面这个函数将 Camera AP 部分所设置的参数全部 dump 出来了,真是多啊! 这里仅限于 MTK 平台,MTK 自己在相机这块添加了许多功能,所以看起来就有一大堆的参数. 调 ...
- 各种同步方法性能比较(synchronized,ReentrantLock,Atomic)
5.0的多线程任务包对于同步的性能方面有了很大的改进,在原有synchronized关键字的基础上,又增加了ReentrantLock,以及各种Atomic类.了解其性能的优劣程度,有助与我们在特定的 ...
- U3D rootMotion
Body Transform The Body Transform is the mass center of the character. It is used in Mecanim's retar ...