【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元
如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值。
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const double eps=1e-9;
bool vis[503];
double f[503],a[503][503],ans[500*500];
int N,M,cnt=0,du[503],a1[500*500],a2[500*500];
double fabs(double x){return x>0?x:-x;}
int getint(){char c;while (!isdigit(c=getchar()));int a=c-'0';while(isdigit(c=getchar()))a=a*10+c-'0';return a;}
void prepare(){
for(int i=1;i<=M;++i){
a[a1[i]][a2[i]]+=1.0/du[a2[i]];
a[a2[i]][a1[i]]+=1.0/du[a1[i]];
}
for(int i=1;i<=N;++i)a[N][i]=0;
for(int i=1;i<N;++i)a[i][i]=-1.0;
a[1][N+1]=-1.0;a[N][N]=1.0;
}
void swapp(double &x,double &y){double z=x;x=y;y=z;}
void gauss(){
for(int i=1;i<=N;++i){
int now=i;
for(int j=i+1;j<=N;++j)if(fabs(a[j][i])>fabs(a[now][i]))now=j;
if (now!=i)for(int j=i;j<=N+1;++j)swapp(a[now][j],a[i][j]);
for(int j=i+1;j<=N;++j){
double t=a[j][i]/a[i][i];
for(int k=i;k<=N+1;++k)a[j][k]-=t*a[i][k];
}
}
for(int i=N;i>=1;--i){
for(int j=N;j>i;--j){
a[i][N+1]-=a[j][N+1]*a[i][j];
}a[i][N+1]/=a[i][i];
}
}
bool cmp(double a,double b){return a>b;}
int main(){
memset(a,0,sizeof(a));
memset(du,0,sizeof(du));
N=getint();M=getint();
for(int i=1;i<=M;++i){
a1[i]=getint();a2[i]=getint();
du[a1[i]]++;du[a2[i]]++;
}prepare();
gauss();
cnt=0;
for(int i=1;i<=M;++i){
ans[++cnt]=a[a1[i]][N+1]/du[a1[i]]+a[a2[i]][N+1]/du[a2[i]];
}
sort(ans+1,ans+M+1,cmp);
double sa=0;
for(int i=1;i<=M;++i) sa+=ans[i]*i*1.0;
printf("%.3lf\n",sa);
return 0;
}
这样就可以了
【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元的更多相关文章
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
- bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- [HNOI2013]游走 期望+高斯消元
纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- [luogu3232 HNOI2013] 游走 (高斯消元 期望)
传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- BZOJ3143 [Hnoi2013]游走 【高斯消元】
题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
- bzoj3143游走——期望+高斯消元
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望: 每条 ...
随机推荐
- sqlite查询结果在listview中展示
1.获取db实例 SQLiteDatabase db=dbhelper.getWritableDatabase(); 2.Cursord对象获取查询结构 Cursor cursor=db.rawQue ...
- 如何禁止 iPhone Safari video标签视频自动全屏?
最近做一个移动端微信页面项目,在微信页面中有视频播放,但是需要禁止IOS的自动全屏播放(前提必须使用video标签).如: <video id="post" autoplay ...
- linux命令学习-复制(cp,scp)
linux为我们提供了两个用于文件的copy的命令,一个是cp,一个是scp.但是它们略有不同: cp主要用于在同一台电脑上,在不同的目录之间来回copy文件,scp主要是在不同的linux系统之间来 ...
- Visio使用遇到的问题
1.UML Background Add-on --------------------------- 此 UML 形状所在的绘图页不是 UML 模型图的一部分. 该形状设计用于利用 UML 模型图模 ...
- easyui 的 DataGrid View 使用
easyui真是后台人员的宝呀,让不会前台的程序员,不用再用那些自己看着都恶心的表格了! 今天来说说easyui datagrid 的 数据表格详细展示表格,这个有趣多了! 先上图 然后是代码 $(' ...
- JS判断数据是否是JSON类型
var isJson = function(obj){ var isjson = typeof(obj) == "object" && Object.pro ...
- Redis集群环境的部署记录
Redis Cluster终于出了Stable,这让人很是激动,等Stable很久了,所以还是先玩玩. 一. 集群简单概念. Redis 集群是一个可以在多个 Redis 节点之间进行数据共享的设施( ...
- mysql及php命名规范
一.mysql命名规范 1.设计原则 1) 标准化和规范化数据的标准化有助于消除数据库中的数据冗余.标准化有好几种形式,但 Third Normal Form(3NF)通常被认为在性能.扩展性和数据完 ...
- 20Spring_JdbcTemplatem模板工具类
JdbcTemplate 是Spring提供简化Jdbc开发模板工具类.为了更好的了解整个JdbcTemplate配置数据库连接池的过程,这篇文章不采用配置文件的方式,而是采用最基本的代码 的方式来写 ...
- usb驱动开发8之配置描述符
前面分析了usb的四大描述符之端点描述符,接口描述符(每一个接口对应一个功能,与之配备相应驱动),下面是看配置描述符还是看设备描述符呢??我们知道,设备大于配置,配置大于接口,接口可以有多种设置. 我 ...