Segment Tree Query I & II
Segment Tree Query I
For an integer array (index from 0 to n-1, where n is the size of this array), in the corresponding SegmentTree, each node stores an extra attribute max to denote the maximum number in the interval of the array (index from start to end).
Design a query method with three parameters root, start and end, find the maximum number in the interval [start, end] by the given root of segment tree.
For array [1, 4, 2, 3], the corresponding Segment Tree is:
[0, 3, max=4]
/ \
[0,1,max=4] [2,3,max=3]
/ \ / \
[0,0,max=1] [1,1,max=4] [2,2,max=2], [3,3,max=3]
query(root, 1, 1), return 4
query(root, 1, 2), return 4
query(root, 2, 3), return 3
query(root, 0, 2), return 4
/**
* Definition of SegmentTreeNode:
* public class SegmentTreeNode {
* public int start, end, max;
* public SegmentTreeNode left, right;
* public SegmentTreeNode(int start, int end, int max) {
* this.start = start;
* this.end = end;
* this.max = max
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
*@param root, start, end: The root of segment tree and
* an segment / interval
*@return: The maximum number in the interval [start, end]
*/
public int query(SegmentTreeNode root, int start, int end) {
if (root == null || root.start > end || root.end < start) return Integer.MIN_VALUE; if (root.start == start && root.end == end) return root.max; int mid = (root.start + root.end) / ;
if (start >= mid + ) {
return query(root.right, start, end);
} else if (end <= mid) {
return query(root.left, start, end);
} else {
return Math.max(query(root.left, start, mid), query(root.right, mid + , end));
} }
}
Segment Tree Query II
For an array, we can build a SegmentTree for it, each node stores an extra attribute count to denote the number of elements in the the array which value is between interval start and end. (The array may not fully filled by elements)
Design a query method with three parameters root,start and end, find the number of elements in the in array's interval [start, end] by the given root of value SegmentTree.
For array [0, 2, 3], the corresponding value Segment Tree is:
[0, 3, count=3]
/ \
[0,1,count=1] [2,3,count=2]
/ \ / \
[0,0,count=1] [1,1,count=0] [2,2,count=1], [3,3,count=1]
query(1, 1), return 0
query(1, 2), return 1
query(2, 3), return 2
query(0, 2), return 2
/**
* Definition of SegmentTreeNode:
* public class SegmentTreeNode {
* public int start, end, count;
* public SegmentTreeNode left, right;
* public SegmentTreeNode(int start, int end, int count) {
* this.start = start;
* this.end = end;
* this.count = count;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
*@param root, start, end: The root of segment tree and
* an segment / interval
*@return: The count number in the interval [start, end]
*/
public int query(SegmentTreeNode root, int start, int end) {
if (root == null || root.start > end || root.end < start) return ; // alert, special case
if (end > root.end) end = root.end;
if (start < root.start) start = root.start; if (root.start == start && root.end == end) return root.count; int mid = (root.start + root.end) / ; if (end <= mid) {
return query(root.left, start, end);
} else if (start >= mid + ) {
return query(root.right, start, end);
} else {
return query(root.right, mid + , end) + query(root.left, start, mid);
}
}
}
Segment Tree Query I & II的更多相关文章
- Lintcode: Segment Tree Query II
For an array, we can build a SegmentTree for it, each node stores an extra attribute count to denote ...
- Lintcode247 Segment Tree Query II solution 题解
[题目描述] For an array, we can build a Segment Tree for it, each node stores an extra attribute count t ...
- Segment Tree Build I & II
Segment Tree Build I The structure of Segment Tree is a binary tree which each node has two attribut ...
- Lintcode: Segment Tree Query
For an integer array (index from 0 to n-1, where n is the size of this array), in the corresponding ...
- 247. Segment Tree Query II
最后更新 二刷 09-Jna-2017 利用线段树进行区间查找,重点还是如何判断每一层的覆盖区间,和覆盖去见与当前NODE值域的关系. public class Solution { public i ...
- 202. Segment Tree Query
最后更新 二刷 09-Jan-17 正儿八经线段树的应用了. 查找区间内的值. 对于某一个Node,有这样的可能: 1)需要查找区间和当前NODE没有覆盖部分,那么直接回去就行了. 2)有覆盖的部分, ...
- Lintcode: Segment Tree Modify
For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in thi ...
- Leetcode: Range Sum Query - Mutable && Summary: Segment Tree
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
- [LintCode] Segment Tree Build II 建立线段树之二
The structure of Segment Tree is a binary tree which each node has two attributes startand end denot ...
随机推荐
- win8 配 jdk
Win8配置jdk 1.7环境变量 环境:win8(32位)64位差不多 jdk1.7 1.右击计算机-属性-高级系统设置-高级-环境变量,弹出“环境变量”对话框,主要是改下面的环 ...
- AC自动机(转)
http://www.cppblog.com/mythit/archive/2009/04/21/80633.html 首先简要介绍一下AC自动机:Aho-Corasick automation,该算 ...
- 你也可以当面霸-Servlet与JSP的原理及特点
既然是面试系列,就是面试官和应聘者之间的对话.本文是采用一问一答的形式呈现给读者的,这样能有一个明确的考察点,不像理论知识那么枯燥. 01.什么是Servlet技术 Servlet是和平台无关的服务器 ...
- Virtualbox虚拟机安装Ubuntu图文版
这篇文章给大家介绍一下如何在Windows系统下的Virtual Box虚拟机软件中安装Ubuntu系统. 适用环境:Windows系统作为物理机,在此平台上搭建一个Virtual Box虚拟平台,在 ...
- 向Oracle中传入数组,批量执行SQL语句
1.首先用PL/SQL创建package create or replace package excuteBatchOperate as type sqlStr_Array ) index by bi ...
- Protocol Buffers(Protobuf)开发者指南---概览
Protocol Buffers(Protobuf)开发者指南---概览 欢迎来到protocol buffers的开发者指南文档,protocol buffers是一个与编程语言无关‘.系统平台无关 ...
- hdu 1087 Super Jumping! Jumping! Jumping!(动态规划)
题意: 求解最大递增子序列. 例如:3 1 3 2 输入 3 个数 1 3 2 则递增子序列有 {1} {3} {2} {1 3} {1 2} ,故输出子序列的最大和 4 解题思路: x[n](n个 ...
- C语言时间函数
#include "time.h" #include "stdio.h" #include "stdlib.h" int main() { ...
- linux ls和 ll 命令
工作中用到 ll -alrth|tail -30 命令 所以再来回顾一下 ls 命令 linux ls和 ll 命令 ll 命令列出的信息更加详细,有时间,是否可读写等信息 ll命令和 ...
- GTP V0 和 GTP V1
GTP概述 GTP(GPRS Tunnelling Protocol)协议应用在SGSN 和GGSN 之间,为各个移动台(MS) 建立GTP 通道,GTP 通道是 GPRS服务节点(GSN) 之间的安 ...