Computer Science An Overview _J. Glenn Brookshear _11th Edition

The task of understanding general images is usually approached as a two-

step process: (1)
image processing,
which refers to identifying characteristics of
the image, and (2)
image analysis,
which refers to the process of understanding
what these characteristics mean. We have already observed this dichotomy in
the context of recognizing symbols by means of their geometric features. In that
situation, we found image processing represented by the process of identifying
the geometric features found in the image and image analysis represented by the
process of identifying the meaning of those features.
 
Image processing entails numerous topics. One is edge enhancement, which is

the process of applying mathematical techniques to clarify the boundaries between
regions in an image. In a sense, edge enhancement is an attempt to convert a
photograph into a line drawing. Another activity in image analysis is known as
region finding. This is the process of identifying those areas in an image that have

common properties such as brightness, color, or texture. Such a region probably
represents a section of the image that belongs to a single object. (It is the ability to
recognize regions that allows computers to add color to old-fashioned black and
white motion pictures.) Still another activity within the scope of image processing
is smoothing, which is the process of removing flaws in the image. Smoothing keeps
errors in the image from confusing the other image-processing steps, but too much
smoothing can cause the loss of important information as well.
Smoothing, edge enhancement, and region finding are all steps toward iden-
tifying the various components in an image. Image analysis is the process of
determining what these components represent and ultimately what the image
means. Here one faces such problems as recognizing partially obstructed objects
from different perspectives. One approach to image analysis is to start with an
assumption about what the image might be and then try to associate the compo-
nents in the image with the objects whose presence is conjectured. This appears
to be an approach applied by humans. For instance, we sometimes find it hard to
recognize an unexpected object in a setting in which our vision is blurred, but
once we have a clue to what the object might be, we can easily identify it.
 

验证码识别 edge enhancement - 轮廓增强 region finding - 区域查找的更多相关文章

  1. 简单的验证码识别(opecv)

    opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 :  一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理:  验证码 ...

  2. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  3. [验证码识别技术]字符验证码杀手--CNN

    字符验证码杀手--CNN 1 abstract 目前随着深度学习,越来越蓬勃的发展,在图像识别和语音识别中也表现出了强大的生产力.对于普通的深度学习爱好者来说,一上来就去跑那边公开的大型数据库,比如I ...

  4. Pyhthon爬虫其之验证码识别

    背景 现在的登录系统几乎都是带验证手段的,至于验证的手段也是五花八门,当然用的最多的还是验证码.不过纯粹验证码识已经是很落后的东西了,现在比较多见的是滑动验证,滑动拼图验证(这个还能往里面加广告).点 ...

  5. windows下简单验证码识别——完美验证码识别系统

    此文已由作者徐迪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 讲到验证码识别,大家第一个可能想到tesseract.诚然,对于OCR而言,tesseract确实很强大,自带 ...

  6. python之web自动化验证码识别解决方案

    验证码识别解决方案 对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动 ...

  7. 基于SVM的字母验证码识别

    基于SVM的字母验证码识别 摘要 本文研究的问题是包含数字和字母的字符验证码的识别.我们采用的是传统的字符分割识别方法,首先将图像中的字符分割出来,然后再对单字符进行识别.首先通过图像的初步去噪.滤波 ...

  8. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  9. 验证码识别<1>

    1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? p ...

随机推荐

  1. Android读书笔记0-从零开始

    可以有千万个理由,但是结果就在这里,我开始对Android产生兴趣,于是决定学点啥.啥都不说,单刀入正题. 开发环境 啥都不说,直接上图. 只说Windows平台上,下载完直接解压即可.比起VS安装过 ...

  2. Android种 adb是什么(转)

    提到adb.exe,一直关注我们Android系列教程的朋友们应该不会感到陌生,因为无论取得 Root权限或者刷机的时候我们都通过adb直接操作管理Android手机,但是可能大多数对于adb仅仅局限 ...

  3. listview分页

    listview.setOnScrollListener(new AbsListView.OnScrollListener() { @Override public void onScrollStat ...

  4. IoC模式(转)

    IoC模式 1.依赖 依赖就是有联系,有地方使用到它就是有依赖它,一个系统不可能完全避免依赖.如果你的一个类或者模块在项目中没有用到它,恭喜你,可以从项目中剔除它或者排除它了,因为没有一个地方会依赖它 ...

  5. mysql的统计函数

    一:统计函数 MySQL提供5个统计函数来对对数据进行统计.分别是实现对记录进行统计数,计算和,计算平均数,计算最大值和计算最小值. 1. 统计数据记录条数 可以有两种方式: COUNT(*)使用方式 ...

  6. 简单几何(相对运动距离最值) UVA 11796 Dog Distance

    题目传送门 题意:两只狗在折线上跑,速度未知,同时出发,同时达到.问跑的过程中,两狗的最大距离和最小距离的差 分析:训练指南P261,考虑相对运动,设A静止不动,B相对A运动,相对的运动向量:Vb - ...

  7. 【BZOJ】2875: [Noi2012]随机数生成器(矩阵乘法+快速乘)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵的话很容易看出来.....我就不写了.太水了. 然后乘法longlong会溢出...那么我 ...

  8. 【POJ】2449 Remmarguts' Date(k短路)

    http://poj.org/problem?id=2449 不会.. 百度学习.. 恩. k短路不难理解的. 结合了a_star的思想.每动一次进行一次估价,然后找最小的(此时的最短路)然后累计到k ...

  9. CentOS Git的还原和操作

    $ git log --graph --oneline $ git reset --hard 版本号 用 reflog 挽救错误的重置 [jackluo@localhost demo]$ git re ...

  10. linux中shell变量$#,$@,$*,$?,$$,$!,$_,$0,$1,$2的含义解释

    变量说明:    $$    Shell本身的PID(ProcessID)    $!    Shell最后运行的后台Process的PID    $?    最后运行的命令的结束代码(返回值)    ...