Computer Science An Overview _J. Glenn Brookshear _11th Edition

The task of understanding general images is usually approached as a two-

step process: (1)
image processing,
which refers to identifying characteristics of
the image, and (2)
image analysis,
which refers to the process of understanding
what these characteristics mean. We have already observed this dichotomy in
the context of recognizing symbols by means of their geometric features. In that
situation, we found image processing represented by the process of identifying
the geometric features found in the image and image analysis represented by the
process of identifying the meaning of those features.
 
Image processing entails numerous topics. One is edge enhancement, which is

the process of applying mathematical techniques to clarify the boundaries between
regions in an image. In a sense, edge enhancement is an attempt to convert a
photograph into a line drawing. Another activity in image analysis is known as
region finding. This is the process of identifying those areas in an image that have

common properties such as brightness, color, or texture. Such a region probably
represents a section of the image that belongs to a single object. (It is the ability to
recognize regions that allows computers to add color to old-fashioned black and
white motion pictures.) Still another activity within the scope of image processing
is smoothing, which is the process of removing flaws in the image. Smoothing keeps
errors in the image from confusing the other image-processing steps, but too much
smoothing can cause the loss of important information as well.
Smoothing, edge enhancement, and region finding are all steps toward iden-
tifying the various components in an image. Image analysis is the process of
determining what these components represent and ultimately what the image
means. Here one faces such problems as recognizing partially obstructed objects
from different perspectives. One approach to image analysis is to start with an
assumption about what the image might be and then try to associate the compo-
nents in the image with the objects whose presence is conjectured. This appears
to be an approach applied by humans. For instance, we sometimes find it hard to
recognize an unexpected object in a setting in which our vision is blurred, but
once we have a clue to what the object might be, we can easily identify it.
 

验证码识别 edge enhancement - 轮廓增强 region finding - 区域查找的更多相关文章

  1. 简单的验证码识别(opecv)

    opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 :  一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理:  验证码 ...

  2. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  3. [验证码识别技术]字符验证码杀手--CNN

    字符验证码杀手--CNN 1 abstract 目前随着深度学习,越来越蓬勃的发展,在图像识别和语音识别中也表现出了强大的生产力.对于普通的深度学习爱好者来说,一上来就去跑那边公开的大型数据库,比如I ...

  4. Pyhthon爬虫其之验证码识别

    背景 现在的登录系统几乎都是带验证手段的,至于验证的手段也是五花八门,当然用的最多的还是验证码.不过纯粹验证码识已经是很落后的东西了,现在比较多见的是滑动验证,滑动拼图验证(这个还能往里面加广告).点 ...

  5. windows下简单验证码识别——完美验证码识别系统

    此文已由作者徐迪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 讲到验证码识别,大家第一个可能想到tesseract.诚然,对于OCR而言,tesseract确实很强大,自带 ...

  6. python之web自动化验证码识别解决方案

    验证码识别解决方案 对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动 ...

  7. 基于SVM的字母验证码识别

    基于SVM的字母验证码识别 摘要 本文研究的问题是包含数字和字母的字符验证码的识别.我们采用的是传统的字符分割识别方法,首先将图像中的字符分割出来,然后再对单字符进行识别.首先通过图像的初步去噪.滤波 ...

  8. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  9. 验证码识别<1>

    1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? p ...

随机推荐

  1. oracle的启动过程(不分模式启动)

    Oracle数据库的完整启动过程包含以下3个步骤: 简单地说,就是:启动实例-->加载数据库-->打开数据库. -------------------------------------- ...

  2. 十六进制数'\0x'和'\x'有什么区别?(转)

    区别不大,都是把数按16进制输出. \0x:当输出的数转换为16进制只有1位时,在前面补0,如 0a,其它情况按照实际情况输出. \x:按照输出数转换为16进制的实际位数输出. 此外,小写x和大写X也 ...

  3. BZOJ 1192: [HNOI2006]鬼谷子的钱袋 数学结论

    1192: [HNOI2006]鬼谷子的钱袋 Description 鬼谷子非常聪明,正因为这样,他非常繁忙,经常有各诸侯车的特派员前来向他咨询时政.有一天,他在咸阳游历的时候,朋友告诉他在咸阳最大的 ...

  4. [hive小技巧]同一份数据多种处理

    其实就是from表时,可以插入到多个表. sql语句的模板如下: from history insert overwrite sales select * where actino='purchase ...

  5. QUnit使用笔记-1判断方法

    QUnit是一个前端测试工具. 判断效果: html基本结构: <h1 id="qunit-header">QUnit</h1> <h2 id=&qu ...

  6. python开发_mysqldb安装

    在python的API上面,看到了MySQLdb,即python可以操作mysql数据库 接下来,我就把我这两天的工作给大伙絮叨絮叨: 准备条件: 1.MySQL-python-1.2.4b4.win ...

  7. Gradle dsl method not found renderscriptSupportMode()

    连接: How to use the Renderscript Support Library with Gradle Android-Studio and Renderscript support ...

  8. WebRTC手记之本地视频采集

    转载请注明出处:http://www.cnblogs.com/fangkm/p/4374610.html 前面两篇文章介绍WebRTC的运行流程和使用框架接口,接下来就开始分析本地音视频的采集流程.由 ...

  9. Vijos 1061 迎春舞会之三人组舞(DP)

    题目链接 经典DP问题,通过问题,看出结论,然后倒序,然后注意条件. #include <cstdio> #include <cstring> #include <ios ...

  10. ArcEngine 异常:field is not editable

    字段不可编辑. Access数据库默认第一个字段为ID字段,不可修改.所以,在新建字段时,第一个字段为ObjectID字段,如果没有建立该字段,则把另外的字段作为 不可修改的ID字段,造成field ...