Computer Science An Overview _J. Glenn Brookshear _11th Edition

The task of understanding general images is usually approached as a two-

step process: (1)
image processing,
which refers to identifying characteristics of
the image, and (2)
image analysis,
which refers to the process of understanding
what these characteristics mean. We have already observed this dichotomy in
the context of recognizing symbols by means of their geometric features. In that
situation, we found image processing represented by the process of identifying
the geometric features found in the image and image analysis represented by the
process of identifying the meaning of those features.
 
Image processing entails numerous topics. One is edge enhancement, which is

the process of applying mathematical techniques to clarify the boundaries between
regions in an image. In a sense, edge enhancement is an attempt to convert a
photograph into a line drawing. Another activity in image analysis is known as
region finding. This is the process of identifying those areas in an image that have

common properties such as brightness, color, or texture. Such a region probably
represents a section of the image that belongs to a single object. (It is the ability to
recognize regions that allows computers to add color to old-fashioned black and
white motion pictures.) Still another activity within the scope of image processing
is smoothing, which is the process of removing flaws in the image. Smoothing keeps
errors in the image from confusing the other image-processing steps, but too much
smoothing can cause the loss of important information as well.
Smoothing, edge enhancement, and region finding are all steps toward iden-
tifying the various components in an image. Image analysis is the process of
determining what these components represent and ultimately what the image
means. Here one faces such problems as recognizing partially obstructed objects
from different perspectives. One approach to image analysis is to start with an
assumption about what the image might be and then try to associate the compo-
nents in the image with the objects whose presence is conjectured. This appears
to be an approach applied by humans. For instance, we sometimes find it hard to
recognize an unexpected object in a setting in which our vision is blurred, but
once we have a clue to what the object might be, we can easily identify it.
 

验证码识别 edge enhancement - 轮廓增强 region finding - 区域查找的更多相关文章

  1. 简单的验证码识别(opecv)

    opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 :  一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理:  验证码 ...

  2. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  3. [验证码识别技术]字符验证码杀手--CNN

    字符验证码杀手--CNN 1 abstract 目前随着深度学习,越来越蓬勃的发展,在图像识别和语音识别中也表现出了强大的生产力.对于普通的深度学习爱好者来说,一上来就去跑那边公开的大型数据库,比如I ...

  4. Pyhthon爬虫其之验证码识别

    背景 现在的登录系统几乎都是带验证手段的,至于验证的手段也是五花八门,当然用的最多的还是验证码.不过纯粹验证码识已经是很落后的东西了,现在比较多见的是滑动验证,滑动拼图验证(这个还能往里面加广告).点 ...

  5. windows下简单验证码识别——完美验证码识别系统

    此文已由作者徐迪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 讲到验证码识别,大家第一个可能想到tesseract.诚然,对于OCR而言,tesseract确实很强大,自带 ...

  6. python之web自动化验证码识别解决方案

    验证码识别解决方案 对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动 ...

  7. 基于SVM的字母验证码识别

    基于SVM的字母验证码识别 摘要 本文研究的问题是包含数字和字母的字符验证码的识别.我们采用的是传统的字符分割识别方法,首先将图像中的字符分割出来,然后再对单字符进行识别.首先通过图像的初步去噪.滤波 ...

  8. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  9. 验证码识别<1>

    1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? p ...

随机推荐

  1. Java Hour 48 Servlet 简介

    搞Java Web 开发,绕不开的就是Servlet 了.传说Servlet 是一种比JSP 更加古董的动态网页编程技术.在没有JSP 之前,Servlet 同时充当了展现层,业务逻辑层和持久层. 这 ...

  2. Java反编译利器-Jad, Jode, Java Decompiler等及其IDE插件

    转自:http://blog.csdn.net/superbeck/article/details/5189231 对于长年使用Java的程序员,大部分应该都会或多或少的使用到反编译软件.毕竟,不可能 ...

  3. hdu2955

    #include<bits/stdc++.h> using namespace std; struct Bank { double cau; int money; }bank[]; ]; ...

  4. POJ2699 The Maximum Number of Strong Kings(最大流)

    枚举所有Strong King的状态(最多1024种左右),然后判断是否合法. 判定合法用网络流,源点-比赛-人-汇点,这样连边. 源点向每场比赛连容量为1的边: 如果一场比赛,A和B,A是Stron ...

  5. 初识view

    屏幕左上角为原点,向右为 x 轴, 向下为 y 轴. getLeft getTop getRight getBottom 分别返回 view 的左上右下的坐标,这里的坐标都是相对于view的父view ...

  6. 洛谷 P1147 连续自然数和 Label:等差数列

    题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M. 例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个 ...

  7. 【POJ】2406 Power Strings

    http://poj.org/problem?id=2406 题意:给定一个字符串 L,已知这个字符串是由某个字符串 S 重复 R 次而得到的,求 R 的最大值.(长度<=1000000) #i ...

  8. Codeforces Round# 305 (Div 1)

    [Codeforces 547A] #include <bits/stdc++.h> #define maxn 1000010 using namespace std; typedef l ...

  9. JAVA发送邮件工具类

    import java.util.Date;import java.util.Properties; import javax.mail.BodyPart;import javax.mail.Mess ...

  10. Sublime之旅

    安装 http://www.sublimetext.com/3          常用操作  window版本 CTRL + P 打开文件搜索 Ctrl+K+B 打开目录树 Ctrl+Shift+[ ...