缓存雪崩:由于原有的缓存过期失效,新的缓存还没有缓存进来,有一只请求缓存请求不到,导致所有请求都跑去了数据库,导致数据库IO、内存和CPU眼里过大,甚至导致宕机,使得整个系统崩溃。

解决思路:
1,采用加锁计数,或者使用合理的队列数量来避免缓存失效时对数据库造成太大的压力。这种办法虽然能缓解数据库的压力,但是同时又降低了系统的吞吐量。
2,分析用户行为,尽量让失效时间点均匀分布。避免缓存雪崩的出现。
3,如果是因为某台缓存服务器宕机,可以考虑做主备,比如:redis主备,但是双缓存涉及到更新事务的问题,update可能读到脏数据,需要好好解决。

加锁:加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法。

public class CacheDemo
{
public object GetCacheDataList()
{
const int cacheTime = 60;
const string lockKey = cacheKey;
const string cacheKey = "datainfolist";
var cacheValue = CacheHelper.Get(cacheKey);
if (cacheValue != null)
{
return cacheValue;
}
else
{
lock (lockKey)
{
cacheValue = CacheHelper.Get(cacheKey);
if (cacheValue != null)
{
return cacheValue;
}
else
{
cacheValue = GetDataBaseInfo();
CacheHelper.Add(cacheKey, cacheValue, cacheTime);
}
}
return cacheValue;
}
}
}

  标记失效缓存:

缓存标记:记录缓存数据是否过期,如果过期会触发通知另外的线程在后台去更新实际key的缓存。

  缓存数据:它的过期时间比缓存标记的时间延长1倍,例:标记缓存时间30分钟,数据缓存设置为60分钟。 这样,当缓存标记key过期后,实际缓存还能把旧数据返回给调用端,直到另外的线程在后台更新完成后,才会返回新缓存。

  这样做后,就可以一定程度上提高系统吞吐量。

public object GetProductListNew()
{
const int cacheTime = 30;
const string cacheKey = "product_list";
//缓存标记。
const string cacheSign = cacheKey + "_sign"; var sign = CacheHelper.Get(cacheSign);
//获取缓存值
var cacheValue = CacheHelper.Get(cacheKey);
if (sign != null)
{
return cacheValue; //未过期,直接返回。
}
else
{
CacheHelper.Add(cacheSign, "1", cacheTime);
ThreadPool.QueueUserWorkItem((arg) =>
{
cacheValue = GetProductListFromDB(); //这里一般是 sql查询数据。
CacheHelper.Add(cacheKey, cacheValue, cacheTime*2); //日期设缓存时间的2倍,用于脏读。
}); return cacheValue;
}
}

  缓存穿透:

缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。

  解决的办法就是:如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴。

缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库中查询。

解决思路:

1,如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴。

2,根据缓存数据Key的规则。例如我们公司是做机顶盒的,缓存数据以Mac为Key,Mac是有规则,如果不符合规则就过滤掉,这样可以过滤一部分查询。在做缓存规划的时候,Key有一定规则的话,可以采取这种办法。这种办法只能缓解一部分的压力,过滤和系统无关的查询,但是无法根治。

3,采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的BitSet中,不存在的数据将会被拦截掉,从而避免了对底层存储系统的查询压力。关于布隆过滤器,详情查看:基于BitSet的布隆过滤器(Bloom Filter)

大并发的缓存穿透会导致缓存雪崩。

public object GetProductListNew()
{
const int cacheTime = 30;
const string cacheKey = "product_list"; var cacheValue = CacheHelper.Get(cacheKey);
if (cacheValue != null)
return cacheValue; cacheValue = CacheHelper.Get(cacheKey);
if (cacheValue != null)
{
return cacheValue;
}
else
{
cacheValue = GetProductListFromDB(); //数据库查询不到,为空。 if (cacheValue == null)
{
cacheValue = string.Empty; //如果发现为空,设置个默认值,也缓存起来。
}
CacheHelper.Add(cacheKey, cacheValue, cacheTime); return cacheValue;
}
}

  把空结果,也给缓存起来,这样下次同样的请求就可以直接返回空了,即可以避免当查询的值为空时引起的缓存穿透。同时也可以单独设置个缓存区域存储空值,对要查询的key进行预先校验,然后再放行给后面的正常缓存处理逻辑。

缓存预热

  缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样避免,用户请求的时候,再去加载相关的数据。

  解决思路:

    1,直接写个缓存刷新页面,上线时手工操作下。

    2,数据量不大,可以在WEB系统启动的时候加载。

    3,定时刷新缓存,

缓存更新

  缓存淘汰的策略有两种:

    (1) 定时去清理过期的缓存。

    (2)当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。

  两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂,具体用哪种方案,大家可以根据自己的应用场景来权衡。1. 预估失效时间 2. 版本号(必须单调递增,时间戳是最好的选择)3. 提供手动清理缓存的接口。

 

redis缓存雪崩和缓存穿透的更多相关文章

  1. Redis总结(五)缓存雪崩和缓存穿透等问题

    前面讲过一些redis 缓存的使用和数据持久化.感兴趣的朋友可以看看之前的文章,http://www.cnblogs.com/zhangweizhong/category/771056.html .今 ...

  2. Redis缓存雪崩、缓存穿透、热点Key解决方案和分析

    缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存 ...

  3. Redis总结(五)缓存雪崩和缓存穿透等问题(转载)

    前面讲过一些redis 缓存的使用和数据持久化.感兴趣的朋友可以看看之前的文章,http://www.cnblogs.com/zhangweizhong/category/771056.html .今 ...

  4. Redis缓存雪崩、缓存穿透、缓存击穿、缓存降级、缓存预热、缓存更新

    Redis缓存能够有效地加速应用的读写速度,就DB来说,Redis成绩已经很惊人了,且不说memcachedb和Tokyo Cabinet之流,就说原版的memcached,速度似乎也只能达到这个级别 ...

  5. Redis总结(五)缓存雪崩和缓存穿透等问题 Web API系列(三)统一异常处理 C#总结(一)AutoResetEvent的使用介绍(用AutoResetEvent实现同步) C#总结(二)事件Event 介绍总结 C#总结(三)DataGridView增加全选列 Web API系列(二)接口安全和参数校验 RabbitMQ学习系列(六): RabbitMQ 高可用集群

    Redis总结(五)缓存雪崩和缓存穿透等问题   前面讲过一些redis 缓存的使用和数据持久化.感兴趣的朋友可以看看之前的文章,http://www.cnblogs.com/zhangweizhon ...

  6. SpringBoot微服务电商项目开发实战 --- Redis缓存雪崩、缓存穿透、缓存击穿防范

    最近已经推出了好几篇SpringBoot+Dubbo+Redis+Kafka实现电商的文章,今天再次回到分布式微服务项目中来,在开始写今天的系列五文章之前,我先回顾下前面的内容. 系列(一):主要说了 ...

  7. Redis缓存雪崩,缓存穿透,热点key解决方案和分析

    缓存穿透 缓存系统,按照KEY去查询VALUE,当KEY对应的VALUE一定不存在的时候并对KEY并发请求量很大的时候,就会对后端造成很大的压力. (查询一个必然不存在的数据.比如文章表,查询一个不存 ...

  8. Redis之缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级

    目录 Redis之缓存雪崩.缓存穿透.缓存预热.缓存更新.缓存降级 1.缓存雪崩 2.缓存穿透 3.缓存预热 4.缓存更新 5.缓存降级 Redis之缓存雪崩.缓存穿透.缓存预热.缓存更新.缓存降级 ...

  9. 实例解读什么是Redis缓存穿透、缓存雪崩和缓存击穿

    from:https://baijiahao.baidu.com/s?id=1619572269435584821&wfr=spider&for=pc Redis缓存的使用,极大的提升 ...

  10. Redis中的缓存雪崩与缓存穿透

    1.缓存雪崩 1.1什么是缓存雪崩? 如果我们的缓存挂掉了,这意味着我们的全部请求都跑去数据库了. 我们都知道Redis不可能把所有的数据都缓存起来(内存昂贵且有限),所以Redis需要对数据设置过期 ...

随机推荐

  1. 网络分层和TCP三次握手

    它们就是 OSI 的七层模型,和 TCP/IP 的四层 / 五层模型.这两种模型的最大区别,就是前者在传输层和应用层之间,还有会话层和表示层,而后者没有. TCP三次握手: 位码即tcp标志位,有6种 ...

  2. Spring @SessionAttributes注解 @ModelAttribute注解

    一.@SessionAttribute详解 如果多个请求之间需要共享数据,就可以使用@SessionAttribute. 配置的方法: 在控制器类上标注@SessionAttribute. 配置需要共 ...

  3. Jvm内存回收

    一.什么内存会被回收 可达性分析算法 通过一系列的GC ROOT的对象作为超始点,从这些节点开始向下搜索,搜索所走的路径称为"引用链",当一个对象到GC ROOT之间没有任何引用链 ...

  4. spring 整合shiro框架 模拟登录控制器。

    一.导入shiro  jar包.  我在maven项目中,将常用的jar包都放在里面. <?xml version="1.0" encoding="UTF-8&qu ...

  5. plsql 储存过程 参数的传递方式?

    /* 存储过程 一.oracel存储过程 1.没有返回值 return 值: 2.用输出参数来代替返回值: 3.输出参数可以有多个 二.参数的传递方式 1. 按位置传递 2. 按名字传递 3.混合传递 ...

  6. 寻找写代码感觉(十六)之 集成Validation做参数校验

    写在前面 今天是大年初五了... 不知不觉,又要上班了,美好的假期只剩一天了,有点不舍呢! 也不知道为什么,总感觉像在做梦一样,像没睡醒一样,并不是因为眼睛小,更多应该是自寻烦恼,想得多罢了. 参数校 ...

  7. ApacheCN Python 译文集 20211108 更新

    Think Python 中文第二版 第一章 编程之路 第二章 变量,表达式,语句 第三章 函数 第四章 案例学习:交互设计 第五章 条件循环 第六章 有返回值的函数 第七章 迭代 第八章 字符串 第 ...

  8. MySQL 新增表分区很慢,转移大表数据

    问题: MySQL (version 5.7.26) 数据库有一批表 xxx_yyy,由于评估的数据量可能比较大,因此每张表都设置了表分区,把每个月的数据保存在单独的分区里. 那么如果每年年末,没有提 ...

  9. Redis 哨兵模式

    主从切换技术的方法是:当主服务器宕机了,需要手动将一台从服务器切换为主服务器,这就需要人工干预,这可能会造成一段时间的服务不可用. 一.哨兵模式的概述: 哨兵是一个独立的进程,作为一个进程,他会独立地 ...

  10. nodejs串行无关联

    var async = require('async'); //串行无关联async.series({ one:function(cb) { setTimeout(function(){ consol ...