Solution -「ARC 082D」Sandglass
\(\mathcal{Description}\)
Link.
一个沙漏内共 \(Xg\) 沙,令初始时上半部分为 A,下半部分为 B。沙漏在 \(r_1,r_2,\cdots,r_n\) 时刻会被瞬间翻转。\(q\) 次询问,每次询问给出 \((t,a)\),求初始时 A 有 \(ag\) 沙,\(t\) 时刻时 A 内沙的质量。保证 \(r_{1..n},t_{1..q}\) 升序。
\(n,q\le10^5\)。
\(\mathcal{Solution}\)
显然,随着初始 A 内沙质量的增多,任意时刻下 A 内沙的质量都不会减少。记 \(m(a,t)\) 表示初始 A 有 \(ag\) 沙,\(t\) 时刻时 A 内沙的质量,则应满足 \((\forall t)\left(m(0,t)\le m(a,t)\le m(X,t)\right)\);此外,若存在一个 \(t_0\),使得 \(m(a,t_0)=m(0,t_0)\)(或 \(m(a,t_0)=m(X,t_0)\)),则对于所有 \(t\ge t_0\),都有 \(m(a,t)=m(0,t)\)(或 \(m(a,t)=m(X,t)\))。
据此,维护当前时刻 A 内沙子质量的上下界 \([l,u]\) 以及不考虑上方沙子漏完情况下的 A 内沙子质量 \(x\),若 \(x\in[l,u]\),根据上述性质,不存在沙子漏光的无效时间,\(x\) 就是本次询问答案;否则,取下界或者上界作为答案即可。
复杂度 \(\mathcal O(n+q)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <iostream>
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = -x;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 1e5;
int X, n, r[MAXN + 5];
int main () {
X = rint (), n = rint ();
for ( int i = 1; i <= n; ++ i ) r[i] = rint ();
int ubound = X, lbound = 0, cur = 0, tid = 1, side = -1;
for ( int q = rint (), t, a; q --; ) {
t = rint (), a = rint ();
for ( ; tid <= n && r[tid] <= t; side *= -1, ++ tid ) {
lbound = std::min ( X, std::max ( 0, lbound + side * ( r[tid] - r[tid - 1] ) ) );
ubound = std::min ( X, std::max ( 0, ubound + side * ( r[tid] - r[tid - 1] ) ) );
cur += side * ( r[tid] - r[tid - 1] );
}
int clb = std::min ( X, std::max ( 0, lbound + side * ( t - r[tid - 1] ) ) );
int cub = std::min ( X, std::max ( 0, ubound + side * ( t - r[tid - 1] ) ) );
int sum = cur + side * ( t - r[tid - 1] );
wint ( std::min ( cub, std::max ( clb, sum + a ) ) ), putchar ( '\n' );
}
return 0;
}
\(\mathcal{Details}\)
一道很巧妙的题。假设 \(a\) 为常数,画出 \(m(a,t)\) 的函数图像,就是一个类似于多段绝对值函数的样子。可以非常直观的理解结论(可是我懒得画 owo)。
Solution -「ARC 082D」Sandglass的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「ARC 101D」「AT4353」Robots and Exits
\(\mathcal{Description}\) Link. 有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- Solution -「ARC 124E」Pass to Next
\(\mathcal{Description}\) Link. 有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...
- Solution -「ARC 126E」Infinite Operations
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
- Solution -「ARC 125E」Snack
\(\mathcal{Description}\) Link. 把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...
- Solution -「ARC 058C」「AT 1975」Iroha and Haiku
\(\mathcal{Description}\) Link. 称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...
随机推荐
- spring security 动态 修改当前登录用户的 权限
1.前言 spring security 可以获取当前登录的用户信息,同时提供了接口 来修改权限列表信息 , 使用这个方法 ,可以动态的修改当前登录用户权限. 那么问题来了... 如果我是管理员 ,如 ...
- vert.x框架与tomcat的关系
1.前言 大学4年,老师唯一让我们学习的web服务器是tomcat,配置方式是先从官网下载阿帕奇的tomcat文件,然后在开发平台导入,然后再配置web.xml等文件, 是一个可同步可异步请求的服务器 ...
- 解决ubuntu 18.04(桌面版)搜狗输入法不能正常使用的问题
ubuntu下搜狗输入法的配置文件在~/.config目录下,一般有三个目录SogouPY.SogouPY.users.sogou-qimpanel 执行命令 $ cd ~/.config $ rm ...
- css 垂直居中技巧
CSS垂直居中技巧,我只会23个,你会几个?自古以来(是有多?~),网页CSS的垂直居中需求始终没有停过,而其困难度也始终没有让人轻松过,经过了每位开发先烈的研究后,据说CSS的垂直居中技巧已达到近十 ...
- 在字节,A/B 实验是这么做的!
主要为大家介绍了为什么要做 A/B 测试.火山引擎的 A/B 测试系统架构及字节跳动内部 A/B 测试的最佳实践. 为什么要做 A/B 测试 首先我们看一个案例. 字节跳动有一款中视频产品叫西瓜视频, ...
- Solon Web 开发,六、过滤器、处理、拦截器
Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...
- MongDB日志分析
Result文件数据说明: Ip:106.39.41.166,(城市) Date:10/Nov/2016:00:01:02 +0800,(日期) Day:10,(天数) Traffic: 54 ,(流 ...
- 使用Express连接mysql详细教程(附项目的完整代码我放在结尾了)
使用Express连接mysql详细教程(附项目的完整代码我放在结尾了) 要使用Express连接本地数据库 我们首先需要安装好Express的依赖 我们使用这个框架呢首先要有一点ajax的基础 如果 ...
- 建造者模式(Bulider模式)
模式的定义与特点 建造者(Builder)模式的定义:指将一个复杂对象的构造与它的表示分离,使同样的构建过程可以创建不同的表示,这样的设计模式被称为建造者模式.它是将一个复杂的对象分解为多个简单的对象 ...
- mysql主从模型下如果保证主误删除数据,尽可能避免数据丢失方案