XIN队算法

注:名称由莫队算法改编而来

从luogu搬过来了。。。

\(newly\;upd:2021.7.8\)

\(newly\;upd:2021.6.6\)

OI至高算法,只要XIN队算法打满,保证所有比赛 \(rk1\),碾爆标程,让对手望尘莫及。

请慎用

XIN队算法:

1.遇到不会做的题目不用慌,你要想到你还有XIN队算法,仔细读题,理解题目意义,然后开始准备写XIN队算法。

2.这时候,你可以潇洒地敲出:

void xin_team()

然后开始暴搜

XIN队算法框架:

    void xin_team(参数)
{
if(边界) return;
for(register int i=1;i<=n;++i)
if(条件1)
{
状态转移
xin_team(参数);
状态回溯
}
}

但是,对于不同的题目, void xin_team 并不能解决所有的题目,那该怎么办呢???

对于很多不能用XIN队\(1\)号算法的,大多数可以使用XIN队\(2\)号算法:

next_permutation(a+1,a+n+1); 大法

框架:


void xin_team2
{
do
{
答案记录
}while(next_permutation(a+1,a+n+1));
}

非常完美

但是,由于XIN队算法时间复杂度 只有 \(\mathcal O(2^n)\)或者是\(\mathcal O(n!)\),所以我们提出优化:

优化XIN队算法:

非常不建议使用

框架:

        srand((unsigned)time(0));
do
{
random_shuffle(a+1,a+n+1);
答案记录
}while(next_permutation(a+1,a+n+1));

复杂度:

\[\mathcal O(\lim_{1\to\infty})
\]

还附加超大常数

XIN队算法升级:二维XIN队

有很多很多的题目无法用普通的\(XIN\)队算法解决,这时候我们就需要\(XIN\)队算法升级版:\(\color{red}\huge_{\text{二维XIN队}}\)

二维\(XIN\)队对于代码能力的提升是显而易见的,然而对复杂度的提升更是显而易见的,二维\(XIN\)队算法框架:

比方说:

[SDOI2015]排序

使用此算法,轻松 \(30pts\)

	void xin_team2(int x,int now)
{
if(边界)
{
xin_team2(x,now);
记录
return ;
}
for(register int i=1;i<=n;++i)
{
记录状态
xin_team(x,now+1);
回溯状态
}
}
void xin_team1(int x,int now)
{
if(边界)
{
xin_team2(x,now);
记录
return ;
}
for(register int i=1;i<=n;++i)
{
记录状态
xin_team(x,now+1);
回溯状态
}
}

复杂度:

\[\mathcal O(n! * 2^n)
\]

并且只能说是大概

我们发现,对于一般的题目,大多是 \(dp\) 解决,然而纯粹运用上述方法只能拿到部分分数,甚至全部 \(TLE\) 所以,记忆化 \(XIN\) 队算法应运而生。


对于优秀的记忆化 \(XIN\) 算法,想要什么状态就去找什么状态,然后就可以实现飞一般的提升。。。

包准快

使用记忆化 \(XIN\) 队算法,\(NOI\)包准不打铁!

比方说这个题: \(NOI2020\)美食家

使用 \(XIN\) 队算法,轻轻松松 \(40pts\)

框架:

	void xin_team(int i,int j)
{
if(f[i][j]) return f[i][j];
for(k ...)
xin_team(k,~);
return f[i][j];
}

算法的时间复杂度就是:

\[\mathcal O (\prod_{i=1}^{n} state_{num_i})
\]

\(num\)为状态,复杂度总体海星。。。

然而:

\(\color{red} \huge{\text{方程推不出}}\)

\(\color{green} \huge{\text{亲人两行泪}}\)





\(XIN\) 优化分块预处理

一个月没更了,这次在刷题的时候发现了最新的 \(XIN\) 队算法应用

这是在写蒲公英的时候发现的。

做了好长时间,中途还跑去做树链去了。



时间相差的确实长了一些。。。

在用分块解决这个问题的时候。

发现狂 \(T\) 不止。

但是。

不知道为什么在其他的 \(OJ\) 上都可以过掉

只不过就是很慢。

但是在学校的 \(OJ\) 上最多只有 \(70pts\)。

好评测机

然而并不敢找老师去开大时限

所以我只能优化暴力。。。

然后。

我发现在预处理 \(p_{i,j}\) 的时候,时间差的很多很多。

然而如果用 \(query\) 函数而不是暴力去搞就会错。。。

因为有些需要的状态还没有附上值但是接下来处理需要用到。。。

所以我集中生智

发现了 \(XIN\) 队优化分块预处理法

我都没想到 \(XIN\) 队算法还有优化别的东西的一天

主要思想就是 缺啥找啥

然后状态就有了。。。

双指针突然不香了 \(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\) --摇摆兵

然后飞快

	void xin_team(int x,int y)
{
if(p[x][y]) return;
if(abs(y - x) <= 2) {p[y][x] = p[x][y] = query(l[x],r[y],0); return;}
xin_team(x+1,y-1);
p[x][y] = p[y][x] = query(l[x],r[y],0);
}

\(\color{red}{\huge{\uparrow \text{精华}}}\)

\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\huge{record}\)

XIN队算法的更多相关文章

  1. NBUT 1457 莫队算法 离散化

    Sona Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format: Submit Status Practice NBUT 145 ...

  2. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  3. NPY and girls-HDU5145莫队算法

    Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

  4. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  5. Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...

  6. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  7. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  8. Codeforces 617E XOR and Favorite Number(莫队算法)

    题目大概说给一个序列,多次询问区间异或和为k的连续子序列有多少个. 莫队算法,利用异或的性质,通过前缀和求区间和,先处理出序列各个前缀和,然后每次区间转移时维护i以及i-1前缀和为某数的个数并增加或减 ...

  9. 信心题--FUOJ2226(莫队算法)

    http://acm.fzu.edu.cn/problem.php?pid=2226 信心题,还说是信心题,题目给的真好.但是一点都不像信心题. 又是一个新的算法,莫队算法 莫队算法是一个用数组就可以 ...

随机推荐

  1. C#基础之checked与 unchecked的使用

    C#基础之checked与 unchecked的使用 以上都是C#中的两个关键字的使用.据官网给出的相关介绍是:C# 语句既可以在已检查的上下文中执行,也可以在未检查的上下文中执行. 在已检查的上下文 ...

  2. 免费版对象存储【minIO】CentOS部署实践记录 2021

    好久没写,记录一下 1.背景 之前一直用的七牛,不过是收费的,然后有些定制化需求,可能比较看重预算,然后就有了这篇开源方式:minio 2.简介 官方文档:http://docs.minio.org. ...

  3. pycharm在虚拟机跑深度学习Mac

    1.在PyCharm里配置部署环境 打开PyCharmTools > Deployment > Configuration, 新建一个SFTP服务器,名字自己取: 输入如下图配置,注意这里 ...

  4. Qt实现网络聊天室(客户端,服务端)

    1. 效果演示 客户端 服务器 连接成功之后 2. 预备知识 如果不知道网络编程的可以去看我的上一篇文章C++网络编程 在Qt中,实现网络编程的方式比用C++或C实现要方便简单许多,因为Qt已经替我们 ...

  5. 【Python】(六)Python数据类型-列表和元组,九浅一深,用得到

    您好,我是码农飞哥,感谢您阅读本文,欢迎一键三连哦. 本文分十个章节介绍数据类型中的列表(list)和元组(tuple),从使用说到底层实现,包您满意 干货满满,建议收藏,需要用到时常看看. 小伙伴们 ...

  6. 大白话spring依赖注入

    在前边的文章中分享了spring如何实现属性的注入,有注解和配置文件两种方式,通过这两种方式可以实现spring中属性的注入,具体配置可查看<spring入门(一)[依赖注入]>,那么sp ...

  7. 【C语言】整型在内存中的存储

    整型在内存中的存储 1.整型的归类 char short int long 以上都分为有符号(signed)与无符号(unsigned)的类型 2.原码.反码和补码 2.1 定义 计算机在表示一个数字 ...

  8. 基于Yarp实现内网http穿透

    Yarp介绍 YARP是微软开源的用来代理服务器的反向代理组件,可实现的功能类似于nginx. 基于YARP,开发者可以非常快速的开发一个性能不错的小nginx,用于代理http(s)请求到上游的ht ...

  9. Spring:Spring项目多接口实现类报错找不到指定类

    spring可以通过applicationContext.xml进行配置接口实现类 applicationContext.xml中可以添加如下配置: 在application.properties中添 ...

  10. LeetCode周赛5214

    我去,暴力超时,没啥人情味了.难受,一看答案,结果是dp的题目... 思路分析: 1.用个表记录下每个数当前的最大长度,同时是等差,说明有上一个数,那么当前的长度就是上一个数最大加一