XIN队算法

注:名称由莫队算法改编而来

从luogu搬过来了。。。

\(newly\;upd:2021.7.8\)

\(newly\;upd:2021.6.6\)

OI至高算法,只要XIN队算法打满,保证所有比赛 \(rk1\),碾爆标程,让对手望尘莫及。

请慎用

XIN队算法:

1.遇到不会做的题目不用慌,你要想到你还有XIN队算法,仔细读题,理解题目意义,然后开始准备写XIN队算法。

2.这时候,你可以潇洒地敲出:

void xin_team()

然后开始暴搜

XIN队算法框架:

    void xin_team(参数)
{
if(边界) return;
for(register int i=1;i<=n;++i)
if(条件1)
{
状态转移
xin_team(参数);
状态回溯
}
}

但是,对于不同的题目, void xin_team 并不能解决所有的题目,那该怎么办呢???

对于很多不能用XIN队\(1\)号算法的,大多数可以使用XIN队\(2\)号算法:

next_permutation(a+1,a+n+1); 大法

框架:


void xin_team2
{
do
{
答案记录
}while(next_permutation(a+1,a+n+1));
}

非常完美

但是,由于XIN队算法时间复杂度 只有 \(\mathcal O(2^n)\)或者是\(\mathcal O(n!)\),所以我们提出优化:

优化XIN队算法:

非常不建议使用

框架:

        srand((unsigned)time(0));
do
{
random_shuffle(a+1,a+n+1);
答案记录
}while(next_permutation(a+1,a+n+1));

复杂度:

\[\mathcal O(\lim_{1\to\infty})
\]

还附加超大常数

XIN队算法升级:二维XIN队

有很多很多的题目无法用普通的\(XIN\)队算法解决,这时候我们就需要\(XIN\)队算法升级版:\(\color{red}\huge_{\text{二维XIN队}}\)

二维\(XIN\)队对于代码能力的提升是显而易见的,然而对复杂度的提升更是显而易见的,二维\(XIN\)队算法框架:

比方说:

[SDOI2015]排序

使用此算法,轻松 \(30pts\)

	void xin_team2(int x,int now)
{
if(边界)
{
xin_team2(x,now);
记录
return ;
}
for(register int i=1;i<=n;++i)
{
记录状态
xin_team(x,now+1);
回溯状态
}
}
void xin_team1(int x,int now)
{
if(边界)
{
xin_team2(x,now);
记录
return ;
}
for(register int i=1;i<=n;++i)
{
记录状态
xin_team(x,now+1);
回溯状态
}
}

复杂度:

\[\mathcal O(n! * 2^n)
\]

并且只能说是大概

我们发现,对于一般的题目,大多是 \(dp\) 解决,然而纯粹运用上述方法只能拿到部分分数,甚至全部 \(TLE\) 所以,记忆化 \(XIN\) 队算法应运而生。


对于优秀的记忆化 \(XIN\) 算法,想要什么状态就去找什么状态,然后就可以实现飞一般的提升。。。

包准快

使用记忆化 \(XIN\) 队算法,\(NOI\)包准不打铁!

比方说这个题: \(NOI2020\)美食家

使用 \(XIN\) 队算法,轻轻松松 \(40pts\)

框架:

	void xin_team(int i,int j)
{
if(f[i][j]) return f[i][j];
for(k ...)
xin_team(k,~);
return f[i][j];
}

算法的时间复杂度就是:

\[\mathcal O (\prod_{i=1}^{n} state_{num_i})
\]

\(num\)为状态,复杂度总体海星。。。

然而:

\(\color{red} \huge{\text{方程推不出}}\)

\(\color{green} \huge{\text{亲人两行泪}}\)





\(XIN\) 优化分块预处理

一个月没更了,这次在刷题的时候发现了最新的 \(XIN\) 队算法应用

这是在写蒲公英的时候发现的。

做了好长时间,中途还跑去做树链去了。



时间相差的确实长了一些。。。

在用分块解决这个问题的时候。

发现狂 \(T\) 不止。

但是。

不知道为什么在其他的 \(OJ\) 上都可以过掉

只不过就是很慢。

但是在学校的 \(OJ\) 上最多只有 \(70pts\)。

好评测机

然而并不敢找老师去开大时限

所以我只能优化暴力。。。

然后。

我发现在预处理 \(p_{i,j}\) 的时候,时间差的很多很多。

然而如果用 \(query\) 函数而不是暴力去搞就会错。。。

因为有些需要的状态还没有附上值但是接下来处理需要用到。。。

所以我集中生智

发现了 \(XIN\) 队优化分块预处理法

我都没想到 \(XIN\) 队算法还有优化别的东西的一天

主要思想就是 缺啥找啥

然后状态就有了。。。

双指针突然不香了 \(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\) --摇摆兵

然后飞快

	void xin_team(int x,int y)
{
if(p[x][y]) return;
if(abs(y - x) <= 2) {p[y][x] = p[x][y] = query(l[x],r[y],0); return;}
xin_team(x+1,y-1);
p[x][y] = p[y][x] = query(l[x],r[y],0);
}

\(\color{red}{\huge{\uparrow \text{精华}}}\)

\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\huge{record}\)

XIN队算法的更多相关文章

  1. NBUT 1457 莫队算法 离散化

    Sona Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format: Submit Status Practice NBUT 145 ...

  2. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  3. NPY and girls-HDU5145莫队算法

    Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

  4. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  5. Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...

  6. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  7. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  8. Codeforces 617E XOR and Favorite Number(莫队算法)

    题目大概说给一个序列,多次询问区间异或和为k的连续子序列有多少个. 莫队算法,利用异或的性质,通过前缀和求区间和,先处理出序列各个前缀和,然后每次区间转移时维护i以及i-1前缀和为某数的个数并增加或减 ...

  9. 信心题--FUOJ2226(莫队算法)

    http://acm.fzu.edu.cn/problem.php?pid=2226 信心题,还说是信心题,题目给的真好.但是一点都不像信心题. 又是一个新的算法,莫队算法 莫队算法是一个用数组就可以 ...

随机推荐

  1. 给小米路由R1D增加WebDAV服务

    我的R1D是14年买的,原装的硬盘已经不能用了,换了一块从笔记本上退役下来的500G硬盘后继续愉快的使用了-- 当初买这款路由器的原因之一是看中了它的内置硬盘,可以用来备份手机相册.存储智能摄像机录像 ...

  2. UF_VIEW 视图操作

    Open C   uc6400uc6401uc6402uc6403uc6404uc6405uc6406uc6408uc6409uc6430uc6431uc6432uc6433  获得视图3×3矩阵uc ...

  3. 大厂面试必问!HashMap 怎样解决hash冲突?

    HashMap冲突解决方法比较考验一个开发者解决问题的能力. 下文给出HashMap冲突的解决方法以及原理分析,无论是在面试问答或者实际使用中,应该都会有所帮助. 在Java编程语言中,最基本的结构就 ...

  4. lsnrctl start 报错

    lsnrctl start报错: TNS-12541:TNS:no listener TNS-12560:TNS:protocol adapter error TNS-00511:No listene ...

  5. 通过ffmpeg转换为mp4格式

    FFMPEG  -i  example.wmv -c:v libx264 -strict -2 output.mp4FFMPEG  -i  example.wmv -c:v libx264 -stri ...

  6. 《电容应用分析精粹:从充放电到高速PCB设计》最新勘误表

    最新勘误表百度云盘下载 链接: https://pan.baidu.com/s/18yqwnJrCu9oWvFcPiwRWvA  提取码: x3e3    (本勘误表仅包含错误相关部分,不包含对语句的 ...

  7. 处理python中的信号

    什么是信号 信号(signal)-- 进程间通讯的一种方式,也可作为一种软件中断的方法.一个进程一旦接收到信号就会打断原来的程序执行来按照信号进行处理. 简化术语,信号是一个事件,用于中断运行功能的执 ...

  8. 乘风破浪,Windows11官方原装4K壁纸,前卫的艺术数字设计

    Windows11预览版官方壁纸 默认主题Windows Windows.zip 月轮主题ThemeA ThemeA.zip 艺术石主题ThemeB ThemeB.zip 日升主题ThemeC The ...

  9. lvm脚本

    # 2 SWAP 20GB SWAP # 3 /usr/sap 50GB /usr/sap # 4 Shared 1 x 512 GiB /hana/shared # 5.6 Log 2 x 300 ...

  10. Linux安装telnet(转)

      一.安装telnet 1.检测telnet-server的rpm包是否安装 [root@localhost ~]# rpm -qa telnet-server 若无输入内容,则表示没有安装.出于安 ...