[bzoj1135]Lyz
可以看成一张二分图,判断左半部分是否存在完美匹配
根据hall定理,当且仅当左半部分每一个子集所连向的点数量超过了这个子集的大小
都判定复杂度肯定爆炸,可以贪心,一定选择的是一个区间,即对于任意区间[l,r],都要满足$\sum_{i=l}^{r}ai\le (r-l+1+d)k$(ai表示i号鞋子的人数),化简得到$\sum_{i=l}^{r}(ai-k)\le kd$,kd都是定值,因此相当于要维护$ai-k$的最大字段和,线段树即可
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 #define ll long long
5 #define L (k<<1)
6 #define R (L+1)
7 #define mid (l+r>>1)
8 int n,m,x,y;
9 ll k,ls[N],rs[N],sum[N],f[N];
10 void update(int k,int l,int r,int x,int y){
11 if (l==r){
12 ls[k]+=y;
13 rs[k]+=y;
14 sum[k]+=y;
15 f[k]+=y;
16 return;
17 }
18 if (x<=mid)update(L,l,mid,x,y);
19 else update(R,mid+1,r,x,y);
20 ls[k]=max(ls[L],sum[L]+ls[R]);
21 rs[k]=max(rs[R],sum[R]+rs[L]);
22 sum[k]=sum[L]+sum[R];
23 f[k]=max(max(f[L],f[R]),rs[L]+ls[R]);
24 }
25 int main(){
26 scanf("%d%d%d%d",&n,&m,&x,&y);
27 for(int i=1;i<=n;i++)update(1,1,n,i,-x);
28 k=1LL*x*y;
29 for(int i=1;i<=m;i++){
30 scanf("%d%d",&x,&y);
31 update(1,1,n,x,y);
32 if (f[1]<=k)printf("TAK\n");
33 else printf("NIE\n");
34 }
35 }
[bzoj1135]Lyz的更多相关文章
- BZOJ1135 LYZ(POI2009) Hall定理+线段树
做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...
- 【BZOJ1135】[POI2009]Lyz 线段树
[BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...
- BZOJ1135: [POI2009]Lyz
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 264 Solved: 106[Submit][Status] ...
- 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)
题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...
- 【BZOJ1135】[POI2009]Lyz
题解: hall定理..第一次听说 思考了半小时无果 二分图匹配时间显然太大 但是有这个hall定理 二分图有完美匹配的充要条件是 对于左边任意一个集合(大小为|s|),其连边点构成的集合(大小为|s ...
- [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]
题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...
- BZOJ1135:[POI2009]Lyz(线段树,Hall定理)
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...
- [BZOJ 1135][POI2009]Lyz
[BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...
- 1135: [POI2009]Lyz
1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二 ...
随机推荐
- 配置Internal Load balancer中VM的外网访问
当在Azure中部署SQL VM时,处于安全考虑,不会配置VM的Public IP,会禁止外网的进出站访问,只允许从内部VNET,或者特定的内部IP访问.特别是当使用Azure Internal Lo ...
- 题解 [POI2013]SPA-Walk
题目传送门 题目大意 给出两个长度为 \(n\) 的 \(01\) 串,问是否可以通过某一位把 \(s\) 变为 \(t\),但是中途不能变为 \(k\) 个 \(01\) 串中任意一个,问是否可行. ...
- allure报告中allure.title 如何去掉后方的参数化显示
1.解决方法如下 listener.py 文件位置:Lib\site-packages\allure_pytest\listener.py (第三方包所在的LIb目录) 将下图中红色部分test_re ...
- SudokuSolver 1.0:用C++实现的数独解题程序 【一】
SudokuSolver 1.0 用法与实现效果 SudokuSolver 是一个提供命令交互的命令行程序,提供的命令清单有: H:\Read\num\Release>sudoku.exe Or ...
- 2020.3.21--ICPC训练联盟周赛Benelux Algorithm Programming Contest 2019
A Appeal to the Audience 要想使得总和最大,就要使最大值被计算的次数最多.要想某个数被计算的多,就要使得它经过尽量多的节点.于是我们的目标就是找到 k 条从长到短的链,这些链互 ...
- 【Java虚拟机11】线程上下文类加载器
前言 目前学习到的类加载的知识,都是基于[双亲委托机制]的.那么JDK难道就没有提供一种打破双亲委托机制的类加载机制吗? 答案是否定的. JDK为我们提供了一种打破双亲委托模型的机制:线程上下文类加载 ...
- MySQL:提高笔记-5
MySQL:提高笔记-5 学完基础的语法后,进一步对 MySQL 进行学习,前几篇为: MySQL:提高笔记-1 MySQL:提高笔记-2 MySQL:提高笔记-3 MySQL:提高笔记-4 MySQ ...
- 第四次Alpha Scrum Meeting
本次会议为Alpha阶段第四次Scrum Meeting会议 会议概要 会议时间:2021年4月28日 会议地点:线上会议 会议时长:18min 会议内容简介:本次会议主要由每个人展示自己目前完成的工 ...
- [no code][scrum meeting] Beta 11
$( "#cnblogs_post_body" ).catalog() 例会时间:5月26日11:30,主持者:肖思炀 下次例会时间:5月27日11:30,主持者:乔玺华 一.工作 ...
- linux shell 基本语法之快速上手shell编程
从程序员的角度来看, Shell本身是一种用C语言编写的程序,从用户的角度来看,Shell是用户与Linux操作系统沟通的桥梁.用户既可以输入命令执行,又可以利用 Shell脚本编程,完成更加复杂的操 ...