http://acm.hdu.edu.cn/showproblem.php?pid=5475

An easy problem

Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1146    Accepted Submission(s): 560

Problem Description
One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
1. multiply X with a number.
2. divide X with a number which was multiplied before.
After each operation, please output the number X modulo M.
 
Input
The first line is an integer T(1≤T≤10), indicating the number of test cases.
For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1≤Q≤105,1≤M≤109)
The next Q lines, each line starts with an integer x indicating the type of operation.
if x is 1, an integer y is given, indicating the number to multiply. (0<y≤109)
if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)

It's guaranteed that in type 2 operation, there won't be two same n.
 
Output
For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
Then Q lines follow, each line please output an answer showed by the calculator.
 
Sample Input
1
10 1000000000
1 2
2 1
1 2
1 10
2 3
2 4
1 6
1 7
1 12
2 7
 
Sample Output
Case #1:
2
1
2
20
10
1
6
42
504
84
 
Source
 
Recommend
hujie
 

题意:

原数开始时是1按顺序给你Q个操作,然后其中操作分两种。

1表示将上个操作后的数乘以后面给你的数然后对取余,然后输出结果,2表示除的操作,将现在的数除以指定的先前你所乘上的第几个数

然后对M取模。

思路:

这题用线段树写,断点更新,复杂度是n*(log(n));

代码:

  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 typedef long long LL;
7 void up(LL k,LL l);
8 void build(LL l,LL r,LL k);
9 LL que(LL l,LL r,LL k,LL aa,LL dd);
10 typedef struct pp
11 {
12 LL x;
13 LL y;
14 LL id;
15 LL t;
16 } ss;
17 typedef struct tree1
18 {
19 LL x;
20 LL y;
21 LL id;
22 LL cou;
23 } sd;
24 LL M,N;
25 ss cnt[100005];
26 int flag[4*100005];
27 sd tree[4*100005];
28 using namespace std;
29 int main(void)
30 {
31 LL n,i,j,k,p,q;
32 scanf("%lld",&n);
33 for(i=1; i<=n; i++)
34 {
35 scanf("%lld %lld",&N,&M);
36 memset(tree,0,sizeof(tree));
37 for(j=1; j<=N; j++)
38 {
39 scanf("%lld %lld",&cnt[j].x,&cnt[j].y);
40 cnt[j].id=j;
41 if(cnt[j].x==1)
42 {
43 cnt[j].t=cnt[j].y;//操作1时所要乘的数。
44 }
45 else cnt[j].t=1;//操作2时乘的数等价为1;
46 }
47 build(1,N,0);//建树(因为每步操作都有对应的操作,所以将操作2也放入一起操所,等价为所要乘的数为1)
48 printf("Case #%lld:\n",i);
49 for(j=1; j<=N; j++)
50 {
51 if(cnt[j].x==1)
52 {
53 LL dd=que(1,j,0,1,N);//当1时询问找点
54 printf("%lld\n",dd);
55 }
56 else if(cnt[j].x==2)
57 {
58 up(flag[cnt[j].y],j);//当2时断点更新
59 LL dd=que(1,j,0,1,N);//询问找点
60 printf("%lld\n",dd);
61 }
62 }
63 }
64 return 0;
65 }
66 void build(LL l,LL r,LL k)//建树
67 {
68 tree[k].x=l;
69 tree[k].y=r;
70 if(l==r)
71 {
72 tree[k].cou=cnt[l].t%M;
73 flag[l]=k;
74 return;
75 }
76 else
77 {
78 build(l,(l+r)/2,2*k+1);
79 build((l+r)/2+1,r,2*k+2);
80 tree[k].cou=(tree[2*k+1].cou*tree[2*k+2].cou)%M;
81 }
82 }
83 void up(LL k,LL l)//断点更新
84 {
85 tree[k].cou=1;//要删除的点处就相当于乘
86 k=(k-1)/2;
87 while(k>=0)//向上更新到根结点
88 {
89 tree[k].cou=(tree[2*k+1].cou*tree[2*k+2].cou)%M;
90 if(k==0)
91 {
92 break;
93 }
94 k=(k-1)/2;
95 }
96 }
97 LL que(LL l,LL r,LL k,LL aa,LL dd)//询问
98 {
99 if(l>dd||r<aa)
100 {
101 return 1;
102 }
103 else if(l<=aa&&r>=dd)
104 {
105 return tree[k].cou;
106 }
107 else
108 {
109 LL nx=que(l,r,2*k+1,aa,(aa+dd)/2);
110 LL ny=que(l,r,2*k+2,(aa+dd)/2+1,dd);
111 return (nx*ny)%M;
112 }
113
114 }

hud-5475 An easy problem(线段树)的更多相关文章

  1. HDU 5475 An easy problem 线段树

    An easy problem Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  2. 2015上海网络赛 HDU 5475 An easy problem 线段树

    题意就不说了 思路:线段树,维护区间乘积.2操作就将要除的点更新为1. #include<iostream> #include<cstdio> #include<cstr ...

  3. hdu 5475 An easy problem(暴力 || 线段树区间单点更新)

    http://acm.hdu.edu.cn/showproblem.php?pid=5475 An easy problem Time Limit: 8000/5000 MS (Java/Others ...

  4. POJ 2826 An Easy Problem?![线段]

    An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12970   Accepted: 199 ...

  5. Codeforces 803G Periodic RMQ Problem 线段树

    Periodic RMQ Problem 动态开点线段树直接搞, 我把它分成两部分, 一部分是原来树上的, 一部分是后来染上去的,两个部分取最小值. 感觉有点难写.. #include<bits ...

  6. Codeforces 903G Yet Another Maxflow Problem - 线段树

    题目传送门 传送门I 传送门II 传送门III 题目大意 给定一个网络.网络分为$A$,$B$两个部分,每边各有$n$个点.对于$A_{i} \ (1\leqslant i < n)$会向$A_ ...

  7. bzoj 3489 A simple rmq problem - 线段树

    Description 因为是OJ上的题,就简单点好了.给出一个长度为n的序列,给出M个询问:在[l,r]之间找到一个在这个区间里只出现过一次的数,并且要求找的这个数尽可能大.如果找不到这样的数,则直 ...

  8. spoj IITWPC4F - Gopu and the Grid Problem 线段树

    IITWPC4F - Gopu and the Grid Problem no tags  Gopu is interested in the integer co-ordinates of the ...

  9. 【CF903G】Yet Another Maxflow Problem 线段树

    [CF903G]Yet Another Maxflow Problem 题意:一张图分为两部分,左边有n个点A,右边有m个点B,所有Ai->Ai+1有边,所有Bi->Bi+1有边,某些Ai ...

随机推荐

  1. centos 7的命令变化

    1.service -> systemctl命令 2.ifconfig -> ip 命令 3.netstat -> ss命令 4.route -> ip route命令 5.t ...

  2. 【1】Embarrassingly Parallel(易并行计算问题)

    1.什么是Embarrassingly Parallel(易并行计算问题) 易并行计算问题:A computation that can be divided into a number of  co ...

  3. STL全特化与偏特化

    在泛型编程中,常常会使用一些非完全泛型的类模板,这就是特化. 如何理解全特化呢?如上图所示,第一个template class是空间配置器的类模板,第二个就是一个全特化的template class. ...

  4. Oracle—merge into语法

    oracle的merge into语法,在这种情况下: 基于某些字段,存在就更新,不存在就插入: 不需要先去判断一下记录是否存在,直接使用merge into merge into 语法: MERGE ...

  5. How exactly does Google AdWords work?

    The key to how Google AdWords works is the Quality Score. Quality Score is generally how well an ad ...

  6. redis安装与简单实用

    1.在Linux上redis的安装时十分简单的: 第一步:wget http://download.redis.io/releases/redis-2.8.12.tar.gz 解压: tar zxvf ...

  7. linux下把一个用户从某个组中删除,而不删除用户

    查看当前用户/登录用户 基本语法 whoami / who am I 用户组 介绍 类似于角色,系统可以对有共性的多个用户进行统一的管理. 新增组 语法 groupadd 组名 案例演示 添加test ...

  8. MySQL索引及性能优化分析

    一.SQL性能下降的原因 查询语句问题,各种连接.子查询 索引失效(单值索引.复合索引) 服务器调优及各个参数设置(缓冲.线程池等) 二.索引 排好序的快速查找数据结构 1. 索引分类 单值索引 一个 ...

  9. EntityFramework Core (一)记一次 .net core 使用 ef 6

    使用传统的sql去操作数据库虽然思路更加清晰,对每一步数据库读写操作都能监控到,但是对大数据存储,或存储规则复杂的程序就需要编写大量的SQL语句且不易维护..orm大大方便了复杂的数据库读写操作, 让 ...

  10. Mysql资料 用户权限详解

    目录 一.MySQL权限详解 设置MySQL用户资源限制 用户资源限制执行操作 二.MySQL权限级别介绍 MySQL权限级别 MySQL创建权限 MySQL删除与插入权限 MySQL修改与触发器权限 ...