Just Random

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 3932 Accepted Submission(s): 1276

Problem Description

  Coach Pang and Uncle Yang both love numbers. Every morning they play a game with number together. In each game the following will be done:

  1. Coach Pang randomly choose a integer \(x\) in \([a, b]\) with equal probability.
  2. Uncle Yang randomly choose a integer \(y\) in \([c, d]\) with equal probability.
  3. If \((x + y)\ mod\ p = m\), they will go out and have a nice day together.
  4. Otherwise, they will do homework that day.

    For given \(a, b, c, d, p\) and \(m\), Coach Pang wants to know the probability that they will go out.

Input

  The first line of the input contains an integer \(T\) denoting the number of test cases.

  For each test case, there is one line containing six integers \(a, b, c, d, p\) and \(m(0 <= a <= b <= 10^9, 0 <=c <= d <= 10^9, 0 <= m < p <= 10^9)\).

Output

  For each test case output a single line "Case #x: y". \(x\) is the case number and y is a fraction with numerator and denominator separated by a slash ('/') as the probability that they will go out. The fraction should be presented in the simplest form (with the smallest denominator), but always with a denominator (even if it is the unit).

Sample Input

4
0 5 0 5 3 0
0 999999 0 999999 1000000 0
0 3 0 3 8 7
3 3 4 4 7 0

Sample Output

Case #1: 1/3
Case #2: 1/1000000
Case #3: 0/1
Case #4: 1/1

题意

给出两个区间\([a,b],[c,d]\),从这两个区间分别任意选出一个数字\(x,y\),求\((x+y)\%p=m\)的概率

思路

容斥,将取出来的两个点看做横纵坐标,然后可以做一些平行线,看平行线在区间内的横纵坐标均为整数的点有多少个

\(F(l,r)\)表示从\([0,l]\)中取\(x\),从\([0,r]\)中取\(y\)的满足条件的点的个数

可以得到所有的符合要求的点的个数有\(F(b,d)-F(b,c-1)-F(a-1,d)+F(a-1,c-1)\)个

具体的\(F(l,r)\)的求法有点晕,看这个博客吧:https://blog.csdn.net/SCNU_Jiechao/article/details/40818903

代码

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
ll p,m;
ll get_num(ll l,ll r)
{
if(l<0||r<0)
return 0;
ll ml=l%p,mr=r%p;
ll res=0;
res=(l/p)*(r/p)*p;
res+=(ml+1)*(r/p)+(mr+1)*(l/p);
if(ml>m)
{
res+=min(mr+1,m+1);
ll tmp=(m+p-ml)%p;
if(tmp<=mr)
res+=mr-tmp+1;
}
else
{
ll tmp=(m+p-ml)%p;
if(tmp<=mr)
res+=min(m-tmp+1,mr-tmp+1);
}
return res;
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in", "r", stdin);
freopen("/home/wzy/out", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int t;
cin>>t;
int _=0;
while(t--)
{
ll a,b,c,d;
cin>>a>>b>>c>>d>>p>>m;
ll sum=(b-a+1)*(d-c+1);
ll ans=get_num(b,d)-get_num(b,c-1)-get_num(a-1,d)+get_num(a-1,c-1);
cout<<"Case #"<<++_<<": ";
cout<<ans/__gcd(ans,sum)<<"/"<<sum/__gcd(ans,sum)<<endl;
}
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}

HDU 4790:Just Random(容斥)的更多相关文章

  1. C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥

    C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...

  2. HDU 5297 Y sequence 容斥 迭代

    Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...

  3. hdu 6053 trick gcd 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...

  4. HDU 4609 3-idiots FFT+容斥

    一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...

  5. HDU 4336 Card Collector(容斥)

    题意:要收集n种卡片,每种卡片能收集到的概率位pi,求收集完这n种卡片的期望.其中sigma{pi} <=1; 思路:容斥原理.就是一加一减,那么如何算期望呢.如果用二进制表示,0表示未收集到, ...

  6. HDU 4135 Co-prime(容斥+数论)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. HDU 3970 Harmonious Set 容斥欧拉函数

    pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n  求连续整数[0,n), 中随意选一些数使得选出的 ...

  8. HDU 4135 Co-prime(容斥:二进制解法)题解

    题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...

  9. 多校 HDU 6397 Character Encoding (容斥)

    题意:在0~n-1个数里选m个数和为k,数字可以重复选: 如果是在m个xi>0的情况下就相当于是将k个球分割成m块,那么很明显就是隔板法插空,不能为0的条件限制下一共k-1个位置可以选择插入隔板 ...

  10. 2017ACM暑期多校联合训练 - Team 8 1011 HDU 6143 Killer Names (容斥+排列组合,dp+整数快速幂)

    题目链接 Problem Description Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith ...

随机推荐

  1. 解决CentOS7 docker容器映射端口只监听ipv6的问题

    问题现象 docker容器起来以后,查看9100端口监听情况,如下图: $ ss -lntp State Recv-Q Send-Q Local Address:Port Peer Address:P ...

  2. ssm框架整合 — 更新完毕

    1.spring整合mybatis 数据表自行搭建 ,我的结构如下: 1).导入依赖 <!-- spring整合mybatis的依赖 --> <!-- 1.spring需要的依赖 - ...

  3. 日常Java 2021/9/20

    Java随机数 运用Java的random函数实现猜数字游戏 随机产生一个1-50之间的数字,然后让玩家猜数,猜大猜小都给出提示,猜对后游戏停止 package pingchangceshi; imp ...

  4. 用前端表格技术构建医疗SaaS 解决方案

    电子健康档案(Electronic Health Records, EHR)是将患者在所有医疗机构产生的数据(病历.心电图.医疗影像等)以电子化的方式存储,通过在不同的医疗机构之间共享,让患者面对不同 ...

  5. A Child's History of England.17

    CHAPTER 6 ENGLAND UNDER HAROLD HAREFOOT, HARDICANUTE, AND EDWARD THE CONFESSOR Canute left three son ...

  6. C++ 类型转换(C风格的强制转换):

    转https://www.cnblogs.com/Allen-rg/p/6999360.html C++ 类型转换(C风格的强制转换): 在C++基本的数据类型中,可以分为四类:整型,浮点型,字符型, ...

  7. 优化 if-else 代码的 8 种方案

    前言 代码中如果if-else比较多,阅读起来比较困难,维护起来也比较困难,很容易出bug,接下来,本文将介绍优化if-else代码的八种方案. 方案. 优化方案一:提前return,去除不必要的el ...

  8. Java Criteria使用方法

    Criteria Query 可以看作传统sql的对象化表示. Criteria 可以由session创建. Criteria ct= session.createCriteria(TUser.cla ...

  9. 【Linux卷管理】LVM创建与管理

    安装LVM 首先确定系统中是否安装了lvm工具: [root@jetsen ~]# rpm -qa|grep lvm system-config-lvm-1.1.5-1.0.el5 lvm2-2.02 ...

  10. CDN服务的含义

    CDN的全称是Content Delivery Network,即内容分发网络.CDN的基本原理是广泛采用各种缓存服务器,将这些缓存服务器分布到用户访问相对集中的地区或网络中,在用户访问网站时,利用全 ...