1091. Tmutarakan Exams
1091. Tmutarakan ExamsTime limit: 1.0 second
Memory limit: 64 MB University of New Tmutarakan trains the first-class specialists in mental arithmetic. To enter the University you should master arithmetic perfectly. One of the entrance exams at the Divisibility Department is the following. Examinees are asked to find K different numbers that have a common divisor greater than 1. All numbers in each set should not exceed a given number S. The numbers K and S are announced at the beginning of the exam. To exclude copying (the Department is the most prestigious in the town!) each set of numbers is credited only once (to the person who submitted it first).
Last year these numbers were K=25 and S=49 and, unfortunately, nobody passed the exam. Moreover, it was proved later by the best minds of the Department that there do not exist sets of numbers with the required properties. To avoid embarrassment this year, the dean asked for your help. You should find the number of sets of K different numbers, each of the numbers not exceeding S, which have a common divisor greater than 1. Of course, the number of such sets equals the maximal possible number of new students of the Department.
InputThe input contains numbers K and S (2 ≤ K ≤ S ≤ 50).
OutputYou should output the maximal possible number of the Department's new students if this number does not exceed 10000 which is the maximal capacity of the Department, otherwise you should output 10000.
Sample
Problem Author: Stanislav Vasilyev
Problem Source: USU Open Collegiate Programming Contest March'2001 Senior Session |
2000–2016 Timus Online Judge Team. All rights reserved.
思路:和http://www.cnblogs.com/zzuli2sjy/p/5467008.html一样;
1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<queue>
6 using namespace std;
7 typedef long long LL;
8 bool prime[100];
9 int ans[100];
10 int coutt[10000];
11 LL dp[60][60];
12 int ask[100];
13 int id[100];
14 queue<int>que;
15 int main(void)
16 {
17 int i,j,k,p,q;
18 dp[0][0]=1;
19 dp[1][0]=1;
20 dp[1][1]=1;
21 for(i=2; i<=60; i++)
22 {
23 for(j=0; j<=60; j++)
24 {
25 if(j==0||i==j)
26 {
27 dp[i][j]=1;
28 }
29 else dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
30 }
31 }
32 for(i=2; i<=10; i++)
33 {
34 if(!prime[i])
35 {
36 for(j=i; i*j<=50; j++)
37 {
38 prime[i*j]=true;
39 }
40 }
41 }
42 int cnt=0;
43 for(i=2; i<=50; i++)
44 {
45 if(!prime[i])
46 {
47 ans[cnt++]=i;
48 }
49 }
50 while(scanf("%d %d",&p,&q)!=EOF)
51 { int s;
52 memset(coutt,0,sizeof(coutt));
53 for(s=2; s<=q; s++)
54 {
55 int cc=s;
56 int flag=0;
57 int t=0;
58 while(cc>1)
59 {
60 if(cc%ans[t]==0&&flag==0)
61 {
62 flag=1;
63 que.push(ans[t]);
64 cc/=ans[t];
65 }
66 else if(cc%ans[t]==0)
67 {
68 cc/=ans[t];
69 }
70 else
71 {
72 t++;
73 flag=0;
74 }
75 }
76 int vv=0;
77 while(!que.empty())
78 {
79 ask[vv++]=que.front();
80 que.pop();
81 }
82 for(i=1; i<=(1<<vv)-1; i++)
83 {
84 LL sum=1;
85 int dd=0;
86 for(j=0; j<vv; j++)
87 {
88 if(i&(1<<j))
89 {
90 dd++;
91 sum*=ask[j];
92 }
93 }
94 id[sum]=dd;
95 coutt[sum]++;
96
97 }
98 }
99 LL summ=0;
100 for(i=2; i<=50; i++)
101 {
102 if(id[i]%2&&coutt[i]>=p)
103 {
104 summ+=dp[coutt[i]][p];
105 }
106 else if(coutt[i]>=p)summ-=dp[coutt[i]][p];
107 }if(summ>=10000)summ=10000;
108 printf("%lld\n",summ);
109 }
110 return 0;
111 }
1091. Tmutarakan Exams的更多相关文章
- ural 1091. Tmutarakan Exams(容斥原理)
1091. Tmutarakan Exams Time limit: 1.0 secondMemory limit: 64 MB University of New Tmutarakan trains ...
- Ural 1091 Tmutarakan Exams
Tmutarakan Exams Time Limit: 1000ms Memory Limit: 16384KB This problem will be judged on Ural. Origi ...
- ural 1091. Tmutarakan Exams 和 codeforces 295 B. Greg and Graph
ural 1091 题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1091 题意是从1到n的集合里选出k个数,使得这些数满足gcd大于1 ...
- ural 1091. Tmutarakan Exams(容斥)
http://acm.timus.ru/problem.aspx? space=1&num=1091 从1~s中选出k个数,使得k个数的最大公约数大于1,问这种取法有多少种. (2<=k ...
- URAL - 1091 Tmutarakan Exams (简单容斥原理)
题意:K个不同数组成的集合,每个数都不超过S且它们的gcd>1.求这样的数的个数 分析:从2开始枚举gcd,但这样会发生重复.譬如,枚举gcd=2的集合个数和gcd=3的集合个数,枚举6的时候就 ...
- F - Tmutarakan Exams URAL - 1091 -莫比乌斯函数-容斥 or DP计数
F - Tmutarakan Exams 题意 : 从 < = S 的 数 中 选 出 K 个 不 同 的 数 并 且 gcd > 1 .求方案数. 思路 :记 录 一 下 每 个 数 的 ...
- Tmutarakan Exams URAL - 1091(莫比乌斯函数 || 容斥)
题意: 求1 - s 中 找出k个数 使它们的gcd > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数 求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模 ...
- 2014 Super Training #3 H Tmutarakan Exams --容斥原理
原题: URAL 1091 http://acm.timus.ru/problem.aspx?space=1&num=1091 题意:要求找出K个不同的数字使他们有一个大于1的公约数,且所有 ...
- URAL1091. Tmutarakan Exams(容斥)
1091 容斥原理 #include <iostream> #include<cstdio> #include<cstring> #include<algor ...
随机推荐
- php操作mongodb手册地址
php操作mongodb手册地址: http://php.net/manual/zh/class.mongocollection.php
- 微信小程序调试bug-日程计划类
首先嘤嘤嘤一下,破bug,改了我一天,摔(′д` )-彡-彡 写的个微信小程序 逻辑如下,正常的功能是,我可以新建,修改,查询(按筛选条件),删除某个日程信息,后面贴个页面,我的bug出现就很搞笑了, ...
- 09 eclipse配置maven环境
eclipse配置maven环境 一.打开eclipse:Window>>Preferences: 二.搜索:"maven",然后点击:"Installati ...
- sed 修改文件
总结 正确的修改进文件命令(替换文件内容):sed -i "s#machangwei#mcw#g" mcw.txt 正确的修改追加进文件命令(追加文件内容):sed -i &quo ...
- javaWeb - 1 — servlet — 更新完毕
1.先来聊一些javaWeb相关的知识 简单了解一下:web的发展史 1).web就是网页的意思嘛 2).web的分类 (1).静态web 使用HTML.CSS技术,主要包括图片和文本 优点:简单,只 ...
- 零基础学习java------day14-----泛型,foreach,可变参数,数组和集合间的转换,Set,Map,
1.泛型(jdk1.5以后出现) https://www.cnblogs.com/lwbqqyumidi/p/3837629.html#!comments (1)为什么要用泛型? 限制集合,让它只能存 ...
- Android Https相关完全解析
转载: 转载请标明出处: http://blog.csdn.net/lmj623565791/article/details/48129405: 本文出自:[张鸿洋的博客] 一.概述 其实这篇文章理论 ...
- OC-封装,继承,多态
主要内容概括 标号 主题 内容 一 封装 面向对象三大特性;封装的概念/原因/好处/原则 二 *getter和setter setter / getter方法;注意点 三 自定义代码段 如何自定义代码 ...
- 【编程思想】【设计模式】【行为模式Behavioral】chaining_method
Python版 https://github.com/faif/python-patterns/blob/master/behavioral/chaining_method.py #!/usr/bin ...
- MFC入门示例之列表框(CListControl)
初始化: 1 //初始化列表 2 m_list.ModifyStyle(LVS_TYPEMASK, LVS_REPORT); //报表样式 3 m_list.InsertColumn(0, TEXT( ...