P2257 YY的GCD

解题思路

果然数论的题是真心不好搞。

第一个莫比乌斯反演的题,好好推一下式子吧。。(借鉴了blog

我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n}\sum\limits _{j=1}^{m}[\gcd(x,y)=prim]\)

这算是一类题了,大概套路如下:

  • \(f[d]\) 表示 \(\gcd(i,j)\) 所有的方案数。

    即:\(f(d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)=d]\)

  • \(F(n)\) 为 \(\gcd(i,j)=n\) 和 \(n\) 的倍数的个数

    即:\(F(n)=\sum\limits_{n|d}f(d)=\lfloor\frac{N}{n}\rfloor\lfloor\frac{M}{n}\rfloor\)

    也就是N中为n的倍数的数目与M中为n的倍数的数目的乘积就是所求的 F(n) 了。

  • 根据以上的定义,莫比乌斯反演不难得出:

    \(f(n)=\sum\limits_{n|d}\mu(\lfloor\frac{d}{n}\rfloor)F(d)\)

    接下来就是化简式子

\(Ans=\sum\limits_{p\in prim}\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[gcd(i,j)=p]\)

将\(f(p)\)带入上面式子:

\(Ans=\sum\limits_{p\in prim}f(p)\)

再用上面的式子3莫比乌斯反演一下:

\(Ans=\sum\limits_{p\in prim}\sum\limits_{p|d}\mu(\lfloor\frac{d}{p}\rfloor)F(d)\)

将之前给出的\(F(n)\)表达式带入,再更改一下循环顺序:

\(Ans=\sum\limits_{T=1}^{min(n,m)}\sum\limits_{t|T,t\in prime}\mu(\lfloor\frac{T}{t}\rfloor)\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\)

\(Ans=\sum\limits_{T=1}^{min(n,m)}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor(\sum\limits_{t|T,t\in prime}\mu(\lfloor\frac{T}{t}\rfloor))\)

最后,数论分块一下求一个前缀和就好了。

数论分块:

对于任意一个\(i(i \le n)\),我们需要找到一个最大的 \(j(i \le j \le n )\),使得

此时

  • 注意:只有ans开 long long就好了,都开的话会TLE

code

#include<bits/stdc++.h>
//#define int long long
using namespace std;
const int N=1e7+10;
int T,n,m,ans;
int cnt,f[N],sum[N],mu[N],pri[N];
bool vis[N];
void get_Mobius()
{
mu[1]=1;
for(int i=2;i<N;i++)
{
if(!vis[i])
{
mu[i]=-1;
pri[++cnt]=i;
}
for(int j=1;j<=cnt&&pri[j]*i<N;j++)
{
vis[i*pri[j]]=true;
if(i%pri[j]==0)
break;
else
mu[pri[j]*i]=-mu[i];
}
}
for(int i=1;i<=cnt;i++)
for(int j=1;j*pri[i]<N;j++)
f[j*pri[i]]+=mu[j];
for(int i=1;i<N;i++)
sum[i]=sum[i-1]+f[i];
}
//#undef int
int main()
{
// #define int register long long
#define ll long long
scanf("%d",&T);
get_Mobius();
while(T--)
{
scanf("%d%d",&n,&m);
ll ans=0;
if(n>m)
swap(n,m);
for(int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-1]);
}
printf("%lld\n",ans);
}
return 0;
}

题解 P2257 YY的GCD的更多相关文章

  1. 洛谷 P2257 YY的GCD

    洛谷 P2257 YY的GCD \(solution:\) 这道题完全跟[POI2007]ZAP-Queries (莫比乌斯反演+整除分块) 用的一个套路. 我们可以列出答案就是要我们求: \(ans ...

  2. P2257 YY的GCD

    P2257 YY的GCD 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 k ...

  3. [Luogu P2257] YY的GCD (莫比乌斯函数)

    题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...

  4. 洛谷 P2257 YY的GCD 题解

    原题链接 庆祝: 数论紫题 \(T4\) 达成! 莫比乌斯 \(T1\) 达成! yy 真是个 神犇 前记 之前我觉得: 推式子,直接欧拉筛,筛出个 \(\phi\),然后乱推 \(\gcd\) 就行 ...

  5. 【题解】Luogu P2257 YY的GCD

    原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 显然题目的答案就是\[ Ans=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=prime]\] 我们先设设F(n)表示满足\ ...

  6. P2257 YY的GCD (莫比乌斯反演)

    [题目链接] https://www.luogu.org/problemnew/show/P2257 // luogu-judger-enable-o2 /* -------------------- ...

  7. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  8. P2257 YY的GCD (莫比乌斯反演)

    题意:求\[\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j) = prim]\] 题解:那就开始化式子吧!! \[f(d) = \sum_{i=1}^{n}\sum_{j=1 ...

  9. 并不对劲的bzoj2820:p2257:YY的GCD

    题目大意 \(t\)(\(t\leq10^4\))组数据,给定\(n,m\)(\(n,m\leq10^6\))求 \[\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x,y)=1]\ ...

随机推荐

  1. 微服务架构开发电商系统需要用Redis、ES和MQ吗?

    如果不用什么很高大上的东西,就是有多个微服务就行这种技术架构会很难吗? 我看了一些视频,他们都用到了es.mq.redis的东西,我想不用这些东西,就简单的有多个服务,这样可行吗? 01 使用微服务你 ...

  2. 使用Optional处理null

    一.聊聊NullPointerException   相比做Java开发的,见到NullPointerException肯定不陌生吧,可以说见到它深恶痛绝.在开发时认为不会出现NullPointerE ...

  3. volatile 的使用

    ① 编译器很聪明,会帮我们做些优化,比如: int a; a = 0; // 这句话可以优化掉,不影响 a 的结果 a = 1; ② 有时候编译器会自作聪明,比如: int *p = ioremap( ...

  4. spring为何要注入接口,而注入接口的实现类就会报错

    首先说明,注入的对象确实为实现类的对象.(并不是实现类的代理对象,注入并不涉及代理) 如果只是单纯注入是可以用实现类接收注入对象的,但是往往开发中会对实现类做增强,如事务,日志等,实现增强的AOP技术 ...

  5. 神奇的不可见空格<200b>导致代码异常

    故事是这样发生的,在做一个JSON对象转化的时候,出现了转化异常:刚开始还是以为是格式错误,后来一步步排除,才发现是不可见空格<200b>导致的解析异常 出现 使用Typora编写文字时, ...

  6. [bug] NameNode无法启动 invalid-uri-for-namenode-address

    配置文件core-site.xml中设置有误 <property> <name>fs.defaultFS</name>(NameNode地址) <value& ...

  7. QT发布 - 动态编译,删减以来dll

    经常看到网上有些论调说 Qt 程序无比庞大,甚至拿 .NET 程序来比,说 Qt 程序打包以后跟 .NET 安装包差不多大.由此影响了很多人对 Qt 的选择.我觉得有必要对此做一些澄清-- 显然这个说 ...

  8. 【转载】Pycharm调试高效,还是pdb调试高效? (在服务端)

    https://segmentfault.com/q/1010000005067119 Pycharm调试高效,还是pdb调试高效? (在服务端)  python  3.9k 次浏览 问题对人有帮助, ...

  9. deep

    deepinv20已经解决 sudo apt update && sudo apt upgrade

  10. mysql3_pymysql

    python数据库编程 1.pyshon数据库接口(python DB-API) 1.为开发人员提供的数据库应用编程接口 2.python支持的数据库服务软件 mysql,oracle,sql_ser ...