题解

有些难度

对于 \(30pts\) 直接暴力

对于 \(70pts\) 发现规律 \(2^n-a\) 与 \(a\;\;(a\in [1,2^n))\) 分解质因数后,\(2\) 的次数相同

\(100pts\)

对于至少有两个数相同,我们可以转化为 \(1-p(\text{所有数均不相同})\),那么 \(p(\text{所有数均不相同})=\frac{A_{2^n}^m}{2^{nm}}\)

对于这个式子,我们发现,上下能约分的因子只有 \(2\),根据上文,我们可以把求 \(A_{2^n}^m\) 质因子中 \(2\) 的次数转化为求 \((m-1)!\) 中的

那么对于这个求 \((m-1)!\) 中的 \(2\) 的次数可以 \(logm\) 求,具体做法是

for (register int i(2);i<m;i<<=1) cnt2+=(m-1)/i;

证明:

当 \(i=2\) 时,我们可以把 cnt2+=(m-1)/i 看成求 \(1~m-1\) 中有多少个数质因子中至少有一个 \(2\),其他情况同理

然后再根据逆元求即可

记得开 long long

Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define int long long
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int MOD=1e6+3;
int bs,n,m,cnt2,fz,fm;
inline int fpow(int a,int b) {
int res=1;
while(b) {
if (b&1) res=res*a%MOD;
a=a*a%MOD;b>>=1;
}
return res;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
// printf("%lld\n",fpow(2,1e6+1));
read(n),read(m);
if (log2(m)>(double)n) {puts("1,1");return 0;}
bs=fpow(2,n);
fm=fpow(bs,m-1);
if (m<=MOD) {
fz=1;
for (ri i(1);i<m;p(i)) fz=fz*(bs-i+MOD)%MOD;
}
for (register int i(2);i<m;i<<=1) cnt2+=(m-1)/i;
int inv=fpow(fpow(2,cnt2),MOD-2);
fz=fz*inv%MOD,fm=fm*inv%MOD;
printf("%lld %lld\n",(fm-fz+MOD)%MOD,fm);
return 0;
}
#undef int
}
int main() {return nanfeng::main();}

证明一下 \(2^n-a\) 与 \(a\) 分解质因数后,\(2\) 的次数相同:

\(2^n\) 的二进制可以表示为 \(10000...0\),\(1\) 后面 \(n\) 个 \(0\),那么对于 \(a\),其二进制下最低一位 \(1\) 所对应的 \(2^n\) 的那一位一定为 \(0\)

那么,\(2^n-a\) 的最低一位 \(1\) 一定与 \(a\) 的相同,而最低一位 \(1\) 代表它分解质因数后 \(2\) 的次数为几。

举例:

\(n=5,a=11\),则 \(n=100000\),\(a=1011\),\(2^5-a=10101\)

NOIP 模拟 $12\; \text{简单的玄学}$的更多相关文章

  1. NOIP 模拟 $12\; \text{简单的填数}$

    题解 一个纯的贪心,被我搞成 \(dp\) 了,最后把错解删掉了,骗了 \(10pts\) 考虑如何贪心,设置一种二元组 \((x,l)\),\(x\) 表示当前值,\(l\) 表示当前最长连续长度. ...

  2. NOIP 模拟 $12\; \text{简单的区间}$

    题解 签到题 求区间和为 \(k\) 的倍数的区间,我们可以转化为求左右两个端点,其前缀和相等 对于区间最大值,我们可以把其转化为一个值,它能向左,向右扩展的最远边界,一个单调栈即可 我们设一个值 \ ...

  3. noip模拟12[简单的区间·简单的玄学·简单的填数]

    noip模拟12 solutions 这次考试靠的还是比较好的,但是还是有不好的地方, 为啥嘞??因为我觉得我排列组合好像白学了诶,文化课都忘记了 正难则反!!!!!!!! 害没关系啦,一共拿到了\( ...

  4. (译文)12个简单(但强大)的JavaScript技巧(二)

    原文链接: 12 Simple (Yet Powerful) JavaScript Tips 其他链接: (译文)12个简单(但强大)的JavaScript技巧(一) 强大的立即调用函数表达式 (什么 ...

  5. (译文)12个简单(但强大)的JavaScript技巧(一)

    原文连接: 12 Simple (Yet Powerful) JavaScript Tips 我将会介绍和解析12个简单但是强大的JavaScript技巧. 这些技巧所有的JavaScript程序员都 ...

  6. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  7. NOIP模拟

    1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...

  8. ubuntu 12.04 简单配置samba服务,实现主机与虚拟机互通(设置Windows虚拟盘)

    环境: virtualbox ubuntu12.04 首先,如果你到这步了,说明你的window与linux的网络已经配好了,他们之间是可以互相Ping通的,如果没有,请看我以前的文章 由于我linu ...

  9. 7.22 NOIP模拟7

    又是炸掉的一次考试 T1.方程的解 本次考试最容易骗分的一道题,但是由于T2花的时间太多,我竟然连a+b=c都没判..暴力掉了40分. 首先a+b=c,只有一组解. 然后是a=1,b=1,答案是c-1 ...

随机推荐

  1. ESP-ADF相关学习笔记

    1.makefile:定义了一系列的规则来指定哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能操作,因为 makefile就像一个Shell脚本一样,也可以执行操作 ...

  2. java集合(3)-Java8新增的Stream操作集合

    Java8新增了Stream,IntStream,LongStream,DoubleStream等流式API,这些API代表多个支持串行和并行聚集操作的元素.上面的4个接口中,Stream是一个通用的 ...

  3. 详解Window10下使用IDEA搭建Hadoop开发环境

    前言 经过三次重装,查阅无数资料后成功完成hadoop在win10上实现伪分布式集群,以及IDEA开发环境的搭建.一步一步跟着本文操作可以避免无数天坑. 下载安装Hadoop 下载安装包 进入官网下载 ...

  4. 两万字Vue.js基础学习笔记(二)

    Vue.js学习笔记(二) 4.模块化开发 ES6模块化的导入和导出 我们使用export指令导出了模块对外提供的接口,下面我们就可以通过import命令来加载对应的这个模块了 首先,我们需要在HTM ...

  5. AI开发者十问:10分钟了解AI开发的基本过程

    摘要:从AI开发模型.框架.工具,到提升开发效率的学习办法,为AI开发者逐一解答. 本文分享自华为云社区<10分钟了解AI开发的基本过程>,作者:简单坚持. 1.AI开发究竟在开发什么? ...

  6. 前端基础css(三)

    HTML:用于显示页面的内容 CSS:用于以什么样的形式(样式)去显示 一. 选择器 [1] 标签/元素选择器 (整个页面的所有的相同的标签都显示统一的样式) h1{ font-size: 20px; ...

  7. 简单图解OSI七层网络模型

    Open Systems Interconnection(OSI)定义了一个网络框架:其以层为单位实现了各种协议,同时会将控制权逐层传递. 目前OSI主要作为教学工具被使用,其在概念上将计算机网络结构 ...

  8. 【对线面试官】Kafka基础入门

    <对线面试官>系列目前已经连载33篇啦,这是一个讲人话面试系列 [对线面试官]Java注解 [对线面试官]Java泛型 [对线面试官] Java NIO [对线面试官]Java反射 &am ...

  9. <textarea></textarea>标签的placeholder属性不生效问题

    <textarea></textarea>标签的placeholder属性不生效问题   1.在用到<textarea></textarea>标签时,设 ...

  10. C#制作网盘搜索工具(简单的爬虫)

    最近学习C#编程,在网上发现一篇winform下制作百度网盘搜索器的文章,故而下载源码学习一二.无奈原博所用的网址失效,故而自己改写了网址和相关源代码,也进行了实现.因为初学,接触的知识较多,为免忘记 ...