题面:#10470. 「2020-10-02 提高模拟赛」流水线 (line)

题目中的那么多区间的条件让人感觉极其难以维护,而且贪心的做法感觉大多都能 hack 掉,因此考虑寻找一些性质,然后再设计 DP 状态。

设两端区间\(Q_i\)和\(Q_j\)满足\(Q_i \subseteq Q_j\),那么显然\(Q_j\)要么单独一组,要么就和\(Q_i\)一组。

证明使用反证法,设\(Q_j\)与其他某些一组,那么我把\(Q_j\)放入\(Q_i\)那一组,显然两组的答案都不会变少。

因此我们认为\(Q_j\)这一段无用了,当且仅当它单独一组时我们再计算它的贡献\(t_j-s_j\)。剩下的区间显然满足性质:左端点与右端点分别递增,于是就可以 DP 了。设\(f_{i,j}\)为前\(i\)个区间分成了\(j\)组后最大的收获,状态转移方程:

\[f_{i,j}==\min_{k<i,t_{k+1}>s_i}{f_{k,j-1}+t_{k+1}-s_i}
\]

正确性来源于这些区间的并就等于\([s_i,t_{k+1}]\),使用单调队列优化可以实现\(\Theta(n^2)\)。最后枚举一下我选几个之前不要的那种大区间,从大到小枚举,就可以了。

然后就不得不提这题实现的诸多细节了,因为我们要保证答案更新时一定是从合法的值更新,所以\(f\)数组的初值统统要设为负无穷,可以避免非常多的细节,还有f[0][0]=0那一句其实是最妙的,能够解决很多初值的问题。

memset(f, -127 / 3, sizeof f);
f[0][0] = 0;
for (int i = 1; i <= k; i++)
{
q[head = tail = 1] = i - 1;
for (int j = i; j <= cnt; j++)
{
while (t[nw[q[head] + 1]] <= s[nw[j]] && head <= tail)
{
head++;
}
f[j][i] = f[q[head]][i - 1] + t[nw[q[head] + 1]] - s[nw[j]];
while (head <= tail && f[j][i - 1] + t[nw[j + 1]] >= f[q[tail]][i - 1] + t[nw[q[tail] + 1]])
{
tail--;
}
q[++tail] = j;
}
}
LL ans = 0, now = 0;
for (int i = 0; i <= k; i++)
{
if (f[cnt][k - i])
ans = max(ans, now + f[cnt][k - i]);
if (hp.empty()) break;
now += hp.top(); hp.pop();
}

#10470. 「2020-10-02 提高模拟赛」流水线 (line)的更多相关文章

  1. #10471. 「2020-10-02 提高模拟赛」灌溉 (water)

    题面:#10471. 「2020-10-02 提高模拟赛」灌溉 (water) 假设只有一组询问,我们可以用二分求解:二分最大距离是多少,然后找到深度最大的结点,并且把它的\(k\)倍祖先的一整子树删 ...

  2. 「2019-8-13提高模拟赛」树 (tree)

    传送门 Description 你有一个 \(n\)个点的树,第 \(i\)个点的父亲是\(p_i\).每个点有一个权值 \(t_i\) 和一个颜色黑或者白.所有点一开始都是白色. 你要进行 \(m\ ...

  3. 「2019-8-11提高模拟赛」女装盛宴 (flag)

    传送门 Solution  基环树+倍增+双指针 第一次因为#define int long long而玄学RE 为什么标程都不用开\(long long\)啊 Code  /*玄学RE 看来defi ...

  4. 「CSP-S模拟赛」2019第四场

    「CSP-S模拟赛」2019第四场 T1 「JOI 2014 Final」JOI 徽章 题目 考场思考(正解) T2 「JOI 2015 Final」分蛋糕 2 题目 考场思考(正解) T3 「CQO ...

  5. 10.17 NOIP模拟赛

    目录 2018.10.17 NOIP模拟赛 A 咒语curse B 神光light(二分 DP) C 迷宫maze(次短路) 考试代码 B 2018.10.17 NOIP模拟赛 时间:1h15min( ...

  6. 10.16 NOIP模拟赛

    目录 2018.10.16 NOIP模拟赛 A 购物shop B 期望exp(DP 期望 按位计算) C 魔法迷宫maze(状压 暴力) 考试代码 C 2018.10.16 NOIP模拟赛 时间:2h ...

  7. JZOJ 2020.10.7 提高B组反思

    JZOJ 2020.10.7 提高B组反思 T1 比较简单的一道题 跑\(k\)遍\(SPFA\) 然后全排列顺序枚举求解 TLE 60 双向存边数组没开两倍-- T2 搞出分母 分子不会求 \(n^ ...

  8. JZOJ 2020.10.6 提高B组反思

    JZOJ 2020.10.6 提高B组反思 T1 NYG的动态数点 最简单的一题 很容易想到\(O(n)\)的做法 枚举最小的那个数,即\(a_k\) 然后向左和向右扩展 然后可以直接从右端点+1继续 ...

  9. 10.30 NFLS-NOIP模拟赛 解题报告

    总结:今天去了NOIP模拟赛,其实是几道USACO的经典的题目,第一题和最后一题都有思路,第二题是我一开始写了个spfa,写了一半中途发现应该是矩阵乘法,然后没做完,然后就没有然后了!第二题的暴力都没 ...

随机推荐

  1. Java 是编译型语言还是解释型语言?

    Java首先由编译器编译成.class类型的文件,这个是java自己类型的文件.然后在通过虚拟机(JVM)从.class文件中读一行解释执行一行.因此Java是一种半编译半解释的语言,理解这种意思即可 ...

  2. 欧姆龙PLC HostLink协议整理

    欧姆龙PLC HostLink协议整理 1.常用的存储器功能区 CIO: 输入继电器  272 点(17 CH) 0.00-16.15 输出继电器  272 点(17 CH) 100.00-116.1 ...

  3. the Agiles Scrum Meeting 4

    会议时间:2020.4.12 20:00 1.每个人的工作 今天已完成的工作 yjy:基本完成广播功能,修复bug issues:小组任务1-增量开发组 Bug:冲刺 wjx:继续实现注销功能的后端 ...

  4. nio之缓冲区(Buffer)理解

    一.缓冲区简介 Nio中的 Buffer 是用于存储特定基础类型的一个容器.为了能熟练的使用 Nio中的各种 Buffer , 我们需要理解 Buffer 中的 三个重要 的属性. 1. capaci ...

  5. 字符串与模式匹配算法(四):BM算法

    一.BM算法介绍 BM算法(Boyer-Moore算法)是罗伯特·波义尔(Robert Boyer)和杰·摩尔(J·Moore)在1977年共同提出的.与KMP算法不同的是,BM算法是模式串P由左向右 ...

  6. Java并发:ReadWriteLock 读写锁

    读写锁在同一时刻可以允许多个线程访问,但是在写线程访问,所有的读线程和其他写线程均被阻塞. 读写锁不像 ReentrantLock 那些排它锁只允许在同一时刻只允许一个线程进行访问,读写锁可以允许多个 ...

  7. python mysqlclient安装失败 Command "python setup.py egg_info" failed with error code 1

    python2 python3 中代码 pip install mysqlclient 都安装失败的话, 很有可能是你的操作系统中没有安装mysql 如果确定已经安装了,请忽略下面的内容. Ubunt ...

  8. 聊聊@Transactional 的失效场景,有哪些坑?

    先别急着回答,看完再说也不迟嘛.我们都知道在 Spring 项目中,我们可以直接使用注解 @Transactional 来标识一个事务方法.然而,你可能并不知道这个事务是不是按照你想的方式执行.下面我 ...

  9. telnet IP 端口 的作用

    测试远程服务器的端口是否开启

  10. Jenkins 邮件发送

    1.jenkins新建任务 2.配置svn 3.maven项目构建配置pom.xml 使用maven命令 clean test 构建前清除: 4.系统管理 => 插件管理 =>可选安装邮件 ...