CometOJ-[Contest #10]鱼跃龙门【exgcd】
正题
题目链接:https://cometoj.com/problem/1479
题目大意
给出\(n\)求一个最小的\(x(x>0)\)满足
\]
\(1\leq n\leq 10^{12},1\leq T\leq 100\)
解题思路
转成等比数列求和就是
\]
从里面获得一下信息,考虑枚举\(2n\)的所有约数\(d\),那么我们有\(xd\times y\frac{2n}{d}=2kn\)。
也就是设\(y\frac{2n}{d}=xd+1\),这个式子我们用\(exgcd\)求出最小解然后所有里面取最小的。
然后是一点优化,首先暴力枚举约数是\(O(\sqrt n)\)的,我们可以质因数分解之后搜索就是\(O(\sigma_0(n))\)的了。
然后因为\(i\)和\((i+1)\)一定互质,所以\(d\)和\(\frac{2n}{d}\)不能有相同的质因子。
这样应该就能过了。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10;
ll T,n,ans,cnt,tot,pri[N/10],p[30];
bool v[N];
void Prime(){
for(ll i=2;i<N;i++){
if(!v[i])pri[++cnt]=i;
for(ll j=1;j<=cnt&&i*pri[j]<N;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
return;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=1;y=0;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=y;y=x-(a/b)*y;x=z;
return d;
}
void solve(ll x,ll f){
if(x>tot){
if(f==1||f==n)return;
ll a=n/f,b=f,X,Y;
ll d=exgcd(a,b,X,Y);
Y=-Y;
if(X<0){Y+=((-X+b-1)/b)*a;X+=((-X+b-1)/b)*b;}
if(X>0){Y-=(X/b)*a;X-=(X/b)*b;}
if(Y<0){X+=((-Y+a-1)/a)*b;Y+=((-Y+a-1)/a)*a;}
ans=min(ans,min(X*a,Y*b));
return;
}
solve(x+1,f);
solve(x+1,f*p[x]);
return;
}
signed main()
{
Prime();
scanf("%lld",&T);
while(T--){
scanf("%lld",&n);tot=0;
n=n*2;ll x=n;ans=n-1;
for(ll i=1;i<=cnt;i++){
if(x%pri[i]==0){
p[++tot]=1;
while(x%pri[i]==0)
p[tot]*=pri[i],x/=pri[i];
}
}
if(x!=1){p[++tot]=x;}
solve(1,1);
printf("%lld\n",ans);
}
return 0;
}
CometOJ-[Contest #10]鱼跃龙门【exgcd】的更多相关文章
- Comet OJ - Contest #10 鱼跃龙门 exgcd+推导
考试的时候推出来了,但是忘了 $exgcd$ 咋求,成功爆蛋~ 这里给出一个求最小正整数解的模板: ll solve(ll A,ll B,ll C) { ll x,y,g,b,ans; gcd = e ...
- 2016 Multi-University Training Contest 10
solved 7/11 2016 Multi-University Training Contest 10 题解链接 分类讨论 1001 Median(BH) 题意: 有长度为n排好序的序列,给两段子 ...
- hdu 5416 CRB and Tree(2015 Multi-University Training Contest 10)
CRB and Tree Time Limit: 8000/4000 MS (J ...
- 2015 Multi-University Training Contest 10 hdu 5406 CRB and Apple
CRB and Apple Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- 2015 Multi-University Training Contest 10 hdu 5412 CRB and Queries
CRB and Queries Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
- [二分,multiset] 2019 Multi-University Training Contest 10 Welcome Party
Welcome Party Time Limit: 4000/4000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)T ...
- 2015 Multi-University Training Contest 10(9/11)
2015 Multi-University Training Contest 10 5406 CRB and Apple 1.排序之后费用流 spfa用stack才能过 //#pragma GCC o ...
- Comet OJ - Contest #10 C.鱼跃龙门
传送门 题意: 求最小的\(x\),满足\(\frac{x(x+1)}{2}\% n=0,n\leq 10^{12}\). 多组数据,\(T\leq 100\). 思路: 直接考虑模运算似乎涉及到二次 ...
- Comet OJ - Contest #10 C题 鱼跃龙门
###题目链接### 题目大意: 给你一个 x ,让你求出最小的正整数 n 使得 n * (n + 1) / 2 % x == 0 ,即 n * (n + 1) % 2x == 0 . 分析: 1 ...
随机推荐
- 第一次上传代码到gitee
初始化 git init 添加文件到本地仓库 git add . 提交文件到本地仓库 git remote add origin 仓库地址 拉去远程仓库代码 git pull origin maste ...
- AECC2018同时中英文切换多开使用,加倍提高你的工作效率
最近相信不少人已经更新了AECC2018,升级之后第一件重要的事当然是中英文的切换了,要不然工作中很麻烦.对于一直习惯用中文的人来说,在用模板过程中会出现各种表达式报错极其不方便,而对于习惯英文操作朋 ...
- windows通过pfx文件生成key、crt文件
nginx代理的时候,需要填写证书的crt跟rsa文件路径,通过iis导出的证书是pfx文件(不知道nginx能不能直接用pfx文件,没有查看过相关资料),所以要通过pfx文件生成crt.rsa文件. ...
- js判断checkbox是否选中 .checked不管用
今天开发遇到一个小问题,记小本本记小本本 document.getElementById("id").checked //正确 //如果返回值为true代表选中 //如果返回值为f ...
- 设置Sublime插件快捷键--实现CSS颜色选取
安装插件ColorPicker 如果你经常要查看或设置颜色值,这个插件可以很方便地调用你本机的调色板应用.(译者扩充:)这是一个双向的功能,你既可以在调色板中选择一个颜色,然后按"确定&qu ...
- Spring源码浅析之bean实例的创建过程(二)
在上一篇内容中,介绍了doGetBean方法的源码内容,知道了bean在创建的过程中,有三个范围,单例.多例.Scope,里面都使用到了createBean.下面本篇文章的主要内容,就是围绕creat ...
- Qt学习日记篇-Qt中使用Curl和jsonCpp
1.Qt中安装并使用jsonCPP库 1.1 官网下载.https://sourceforge.net/projects/jsoncpp/ 解压文件得到 jsoncpp-src-0.5.0 文 ...
- Qt中的Q_PROPERTY宏浅析
1. Q_PROPERTY Qt提供了一个绝妙的属性系统,Q_PROPERTY()是一个宏,用来在一个类中声明一个属性property,由于该宏是qt特有的,需要用moc进行编译,故必须继承于QObj ...
- Python习题集(十四)
每天一习题,提升Python不是问题!!有更简洁的写法请评论告知我! https://www.cnblogs.com/poloyy/category/1676599.html 题目 请写一个函数,该函 ...
- ubantu硬盘不足,无法启动
我的ubantu虚拟机经过我一顿操作后,就起不来了.然后经过多方询问,广集天下良方,最终发现是由于分配的硬件空间不足导致的.现象如下: 通过查看 root@ubantu:/snap# df -h Fi ...