正题

题目链接:https://cometoj.com/problem/1479


题目大意

给出\(n\)求一个最小的\(x(x>0)\)满足

\[\left(\sum_{i=1}^xi\right)\equiv 0(\mod n)
\]

\(1\leq n\leq 10^{12},1\leq T\leq 100\)


解题思路

转成等比数列求和就是

\[\frac{i(i+1)}{2}\equiv 0(\mod n)\Rightarrow i(i+1)=2kn
\]

从里面获得一下信息,考虑枚举\(2n\)的所有约数\(d\),那么我们有\(xd\times y\frac{2n}{d}=2kn\)。

也就是设\(y\frac{2n}{d}=xd+1\),这个式子我们用\(exgcd\)求出最小解然后所有里面取最小的。

然后是一点优化,首先暴力枚举约数是\(O(\sqrt n)\)的,我们可以质因数分解之后搜索就是\(O(\sigma_0(n))\)的了。

然后因为\(i\)和\((i+1)\)一定互质,所以\(d\)和\(\frac{2n}{d}\)不能有相同的质因子。

这样应该就能过了。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10;
ll T,n,ans,cnt,tot,pri[N/10],p[30];
bool v[N];
void Prime(){
for(ll i=2;i<N;i++){
if(!v[i])pri[++cnt]=i;
for(ll j=1;j<=cnt&&i*pri[j]<N;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0)break;
}
}
return;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=1;y=0;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=y;y=x-(a/b)*y;x=z;
return d;
}
void solve(ll x,ll f){
if(x>tot){
if(f==1||f==n)return;
ll a=n/f,b=f,X,Y;
ll d=exgcd(a,b,X,Y);
Y=-Y;
if(X<0){Y+=((-X+b-1)/b)*a;X+=((-X+b-1)/b)*b;}
if(X>0){Y-=(X/b)*a;X-=(X/b)*b;}
if(Y<0){X+=((-Y+a-1)/a)*b;Y+=((-Y+a-1)/a)*a;}
ans=min(ans,min(X*a,Y*b));
return;
}
solve(x+1,f);
solve(x+1,f*p[x]);
return;
}
signed main()
{
Prime();
scanf("%lld",&T);
while(T--){
scanf("%lld",&n);tot=0;
n=n*2;ll x=n;ans=n-1;
for(ll i=1;i<=cnt;i++){
if(x%pri[i]==0){
p[++tot]=1;
while(x%pri[i]==0)
p[tot]*=pri[i],x/=pri[i];
}
}
if(x!=1){p[++tot]=x;}
solve(1,1);
printf("%lld\n",ans);
}
return 0;
}

CometOJ-[Contest #10]鱼跃龙门【exgcd】的更多相关文章

  1. Comet OJ - Contest #10 鱼跃龙门 exgcd+推导

    考试的时候推出来了,但是忘了 $exgcd$ 咋求,成功爆蛋~ 这里给出一个求最小正整数解的模板: ll solve(ll A,ll B,ll C) { ll x,y,g,b,ans; gcd = e ...

  2. 2016 Multi-University Training Contest 10

    solved 7/11 2016 Multi-University Training Contest 10 题解链接 分类讨论 1001 Median(BH) 题意: 有长度为n排好序的序列,给两段子 ...

  3. hdu 5416 CRB and Tree(2015 Multi-University Training Contest 10)

    CRB and Tree                                                             Time Limit: 8000/4000 MS (J ...

  4. 2015 Multi-University Training Contest 10 hdu 5406 CRB and Apple

    CRB and Apple Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  5. 2015 Multi-University Training Contest 10 hdu 5412 CRB and Queries

    CRB and Queries Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  6. [二分,multiset] 2019 Multi-University Training Contest 10 Welcome Party

    Welcome Party Time Limit: 4000/4000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)T ...

  7. 2015 Multi-University Training Contest 10(9/11)

    2015 Multi-University Training Contest 10 5406 CRB and Apple 1.排序之后费用流 spfa用stack才能过 //#pragma GCC o ...

  8. Comet OJ - Contest #10 C.鱼跃龙门

    传送门 题意: 求最小的\(x\),满足\(\frac{x(x+1)}{2}\% n=0,n\leq 10^{12}\). 多组数据,\(T\leq 100\). 思路: 直接考虑模运算似乎涉及到二次 ...

  9. Comet OJ - Contest #10 C题 鱼跃龙门

    ###题目链接### 题目大意: 给你一个 x ,让你求出最小的正整数 n 使得 n * (n + 1) / 2  % x == 0 ,即 n * (n + 1)  % 2x == 0 . 分析: 1 ...

随机推荐

  1. 基于css的一些动画

    最近因为期末复习周,博客更新鸽了很久,趁着考完试还记得这件事,把之前的大作业里出现过的css动画总结一下 页脚的联系方式图标 这个图片原型是一个静态图 动画效果如下 html <div clas ...

  2. 常用正则表达式最强汇总(含Python代码举例讲解+爬虫实战)

    大家好,我是辰哥~ 本文带大家学习正则表达式,并通过python代码举例讲解常用的正则表达式 最后实战爬取小说网页:重点在于爬取的网页通过正则表达式进行解析. 正则表达式语法 Python的re模块( ...

  3. C++CLR类库封装Native类库并用C#调用 - 草稿

    1.创建Native类库 新建项目->其他语言->Visual C++->Win32控制台应用程序->DLL     添加头文件       添加源文件       选择生成路 ...

  4. mybatis学习日志之总结

    一.介绍mybatis MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名 ...

  5. C#多线程---Event类实现线程同步

    一.简介 我们使用类(.net Framework中的类,如 AutoResetEvent, Semaphore类等)的方法来实现线程同步的时候,其实内部是调用操作系统的内核对象来实现的线程同步. S ...

  6. Spring详解(九)------事务管理

    1.事务介绍 事务(Transaction),一般是指要做的或所做的事情.在计算机术语中是指访问并可能更新数据库中各种数据项的一个程序执行单元(unit). 这里我们以取钱的例子来讲解:比如你去ATM ...

  7. linux(2)-----新装linux配置

    1.配置本机ip,刚装的Linux无内网ip vi /etc/susconfig/network-scripts/ifcfq-ens33    编辑配置文件 最后一行改为yes service net ...

  8. linux 常用命令(二)——(centos6.8-centos7)防火墙的启动、关闭

    centos 6.8 [centos6.5]: 查看chkconfig列表里面是否有iptables的服务: chkconfig | grep iptables 查看防火墙状态: service ip ...

  9. WPF路由事件

    ​    这节讲一下WPF中的路由事件(Routed Event). [什么是事件] 在了解路由事件前,我们应先来了解一下什么是事件(Event). 在Windows系统中,像鼠标单击,双击,移动这样 ...

  10. Qt5之正则表达式

    字符 描述 \ 将下一个字符标记为一个特殊字符.或一个原义字符.或一个 向后引用.或一个八进制转义符.例如,'n' 匹配字符 "n".'\n' 匹配一个换行符.序列 '\\' 匹配 ...