P1758-[NOI2009]管道取珠【dp】
正题
题目链接:https://www.luogu.com.cn/problem/P1758
题目大意
给出一个大小为\(n\)和一个大小为\(m\)的栈,每次选择一个栈弹出栈顶然后记录这个字母,求所有弹出序列的弹出方案的二次方和。
\(1\leq n,m\leq 500\)
解题思路
二次方和可以看为取出方案相同的对数。
然后就是很简单的\(dp\)了,设\(f_{i,j,k}\)表示都取出了\(i\)个,在第一个栈里分开取了\(j/k\)个,然后滚动。
时间复杂度\(O(nmn^2)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=510,P=1024523;
int n,m,f[N*2][N][N];
char s[N],t[N];
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",s+1);
scanf("%s",t+1);
f[0][0][0]=1;
for(int i=1;i<=n+m;i++)
for(int j=0;j<=min(n,i);j++)
for(int k=0;k<=min(n,i);k++){
f[i&1][j][k]=0;
if(s[j]==s[k]&&j&&k)(f[i&1][j][k]+=f[~i&1][j-1][k-1])%=P;
if(s[j]==t[i-k]&&j&&i-k)(f[i&1][j][k]+=f[~i&1][j-1][k])%=P;
if(t[i-j]==s[k]&&k&&i-j)(f[i&1][j][k]+=f[~i&1][j][k-1])%=P;
if(t[i-j]==t[i-k]&&i-j&&i-k)(f[i&1][j][k]+=f[~i&1][j][k])%=P;
}
printf("%d\n",f[(n+m)&1][n][n]);
return 0;
}
P1758-[NOI2009]管道取珠【dp】的更多相关文章
- Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- [NOI2009]管道取珠 DP + 递推
---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...
- luogu P1758 [NOI2009]管道取珠
luogu 这个题中的平方有点东西,考虑他的组合意义,也就是做这个过程两次,如果两次得到的结果一样就给答案+1,所以可以考虑dp,设\(f_{i,j,k,l}\)表示第一个过程中上面取到的第\(i\) ...
- P1758 [NOI2009]管道取珠
考虑这个式子的意义. 不妨看做进行了两轮操作,这个式子显然等价于两次操作后得到的序列相同的方案数. 这个东西显然是可以dp的. 随便优化一下就成了O(n^3)
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- NOI2009 管道取珠 神仙DP
原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...
- BZOJ 1566 管道取珠(DP)
求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...
随机推荐
- spring-cloud-sleuth+zipkin追踪服务
1, 父Maven pom 文件 <parent> <groupId>org.springframework.boot</groupId> <artifact ...
- C语言 windows下Ansi和UTF-8编码格式的转换
当我们使用MinGW-w64作为编译器在windows系统环境下进行C语言编程时,如果源代码文件(.c)保存格式为Ansi格式,则在打印汉字时不会出现乱码:反之,如果我们使用UTF-8格式保存,则会出 ...
- JAVA集合类(代码手写实现,全面梳理)
参考网址:https://blog.csdn.net/weixin_41231928/article/details/103413167 目录 一.集合类关系图 二.Iterator 三.ListIt ...
- 异步编程之APM
一.APM概述 APM即异步编程模型的简写(Asynchronous Programming Model),我们平时经常会遇到类似BeginXXX和EndXXX的方法,我们在使用这些方法的时候,其实就 ...
- spring的异常处理
出自于:https://blog.csdn.net/he90227/article/details/46309297 ---- 利用Spring进行统一异常处理的两种方式. 原文:https:// ...
- Java程序设计学习笔记(二)
--正则表达式 正则表达式 ^ 匹配的开始 $ 匹配的结束 [] 表示匹配任意一个字符 [asdasd] ...
- 跨平台APP推荐收藏
时间:2019-04-11 整理:pangYuaner 标题:十大跨平台优秀软件 地址:https://www.cnblogs.com/the-king-of-cnblogs/p/3154758.ht ...
- linux下查看磁盘使用内存及清除日志内存
1.查看磁盘内存 df -h 2.清理日志内存 echo "">catalina.out
- T-SQL - query01_创建数据库|创建表|添加数据|简单查询
时间:2017-09-29 整理:byzqy 本篇以"梁山好汉花名册"为例,记录MS SQLServer T-SQL语句的使用,包含命令: 创建数据库 | 删除数据库 创建表 | ...
- 痞子衡嵌入式:MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是MCUXpresso IDE下将关键函数重定向到RAM中执行的几种方法. 前段时间痞子衡写了一篇 <在IAR开发环境下将关键函数重 ...