辛普森积分

  

  这种积分法很暴力:只要求你实现出函数求值\(f(x)\)。

  

  使用辛普森积分,我们可以求出函数一段区间\([l,r]\)的近似积分。记\(mid=\frac{l+r}2\),有:

\[\int_l^rf(x)\;dx\approx\ simpson(l,r)=\frac{f(l)+4f(mid)+f(r)}6*(r-l)
\]

  

  

  其中1,4,1称作科特斯系数。

  

​  如果

\[simpson(l,r)\approx simpson(l,mid)+simpson(mid,r)
\]

  那么我们认为函数在\([l,r]\)的近似积分已经足够精确,可以直接返回\(simpson(l,r)\)。

  

  否则,我们需要递归计算\([l,mid]\)和\([mid,r]\)的积分,相加并返回。

  

  伪代码如下:

  

double simpson(double l,double r){
double mid=(l+r)*0.5;
return (f(l)+4*f(mid)+f(r))*(r-l)/6;
}
double solve(double l,double r){
double mid=(l+r)*0.5,midl=(l+mid)*0.5,midr=(mid+r)*0.5;
if(fabs(simpson(l,r)-simpson(l,mid)+simpson(mid,r))<EPS)
return simpson(l,r);
return solve(l,mid)+solve(mid+1,r);
}

  

  整体算法的耗时,一在于\(f(x)\)的求值,应实现得尽量够快;二在于\(EPS\)的设置,这决定了程序递归的深度,因为\(EPS\)是程序判断当前计算精度是否足够高的决策标准。\(EPS\)越小,精度越大,但耗时也相应越高。

  

  总体的时间复杂度是非常玄学。辛普森积分在应用到某一些十分平滑的函数上时效率一般非常高,可是不排除有丧心病狂出题人专门卡哦。

【Learning】辛普森积分的更多相关文章

  1. uva 1356 Bridge ( 辛普森积分 )

    uva 1356 Bridge ( 辛普森积分 ) 不要问我辛普森怎么来的,其实我也不知道... #include<stdio.h> #include<math.h> #inc ...

  2. BZOJ 2178: 圆的面积并 [辛普森积分 区间并]

    2178: 圆的面积并 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1740  Solved: 450[Submit][Status][Discus ...

  3. 【自适应辛普森积分】hdu1724 Ellipse

    Ellipse Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

  4. BZOJ2178 圆的面积并 计算几何 辛普森积分

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2178.html 题目传送门 - BZOJ2178 题意 给出 $n(n\leq 1000)$ 个圆,求 ...

  5. 【BZOJ2178】圆的面积并(辛普森积分)

    [BZOJ2178]圆的面积并(辛普森积分) 题面 BZOJ 权限题 题解 把\(f(x)\)设为\(x\)和所有圆交的线段的并的和. 然后直接上自适应辛普森积分. 我精度死活一个点过不去,不要在意我 ...

  6. [BZOJ1502]月下柠檬树(自适应辛普森积分)

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1387  Solved: 739[Submit][Status] ...

  7. bzoj 2178 圆的面积并 —— 辛普森积分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2178 先看到这篇博客:https://www.cnblogs.com/heisenberg- ...

  8. hdu 1724 Ellipse —— 自适应辛普森积分

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1724 函数都给出来了,可以用辛普森积分: 一开始 eps = 1e-8 TLE了,答案只要三位小数,那么 ...

  9. 洛谷 P4525 & P4526 [模板] 自适应辛普森积分

    题目:https://www.luogu.org/problemnew/show/P4525 https://www.luogu.org/problemnew/show/P4526 学习辛普森积分:h ...

随机推荐

  1. docker私服搭建nexus3

    docker私服搭建有官方的registry镜像,也有改版后的NexusOss3.x,因为maven的原因搭建了nexus,所以一并将docker私服也搭建到nexus上. nexus的安装过程就单独 ...

  2. Netty源码分析第7章(编码器和写数据)---->第5节: Future和Promies

    Netty源码分析第七章: 编码器和写数据 第五节: Future和Promise Netty中的Future, 其实类似于jdk的Future, 用于异步获取执行结果 Promise则相当于一个被观 ...

  3. Git----01介绍&下载&安装&创建本地仓库

    一.Git介绍 1.0.Git是分布式版本控制工具 1.1.历史 Linux 内核开源项目有着为数众广的参与者.绝大多数的 Linux 内核维护工作都花在了提交补丁和保存归档的繁琐事务上(1991-2 ...

  4. trustbox文件破解

    常见的破解方式,是要还原内容的二进制文件,删除加密壳部分的对应二进制数值,然后把剩下的内容保存下来,就实现了破解的任务.  淘宝破解链接:https://item.taobao.com/item.ht ...

  5. 读取classpath配置文件的方法

    http://www.cnblogs.com/sprinng/p/5622600.html

  6. 学霸网站-Alpha版本发布说明

    项目名称 学霸网站 项目版本 Alpha 项目团队 ourteam 发布日期 2014-11-23 一.版本的新功能 1.匿名提问 用户提问的时候可以选择匿名提问,这样在问题的详细信息不会显示提出者的 ...

  7. Daily Scrum5 11.7

    今日任务: 姓名 任务 时长 徐钧鸿 学习了java连接sqlserver的方法并且实现了连接池 2h 张艺 继续完成和用户管理有关的类的移植(Register.Success.Validate等) ...

  8. iOS开发学习-类似微信聊天消息中的电话号码点击保存到通讯录中的功能

    类似微信聊天消息中的电话号码点击保存到通讯录中的功能,ABAddress的实现在iOS9中是不能正常使用的,点击完成后,手机会非常的卡,iOS9之后需要使用Contact新提供的方法来实现该功能.快捷 ...

  9. web09 struts2配置 struts2入门

    电影网站:www.aikan66.com 项目网站:www.aikan66.com游戏网站:www.aikan66.com图片网站:www.aikan66.com书籍网站:www.aikan66.co ...

  10. 初学Cocos2dx

    初学cocos2dx Cocos2dx 中的主要概念包括:应用.导演.场景.层.精灵.动画.动作. Cocos2dx里面的主要类 1.CCObject Object Object Object 是co ...