Dijkstra(迪杰斯特拉)算法求解最短路径
过程
首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新。每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离。以这个原则,经过N轮计算就能得到每一个节点的最短距离。
第一轮,可以计算出,2、3、4、5、6到原点1的距离分别为:[7, 9, -1, -1, 14]。-1表示无穷大。取其中最小的,为7,即可以确定1的最短路径为0,2为下一轮的前驱节点。同时确定2节点的最短路径为7,路线:1->2。
第二轮,取2节点为前驱节点,按照前驱节点的最短距离加上该节点与前驱节点的距离计算新的最短距离,可以得到3,4,5,6节点到原点的距离为:[17, 22, -1, -1],此时需要将这一轮得到的结果与上一轮的比较,3节点:17 > 9,最短路径仍然为9;4节点:22 < 无穷大,刷新4节点的最短路径为22;5节点:不变,仍然为无穷大;6节点:14 < 无穷大,取14,不变。则可以得到本轮的最短距离为:[9, 22, -1, 14],取最短路径最小的节点,为3,作为下一轮的前驱节点。同时确定3节点的最短路径为9,路线:1->3。
第三轮,同上,以3为前驱节点,得到4,5,6的计算距离为:[20, -1, 11],按照取最短路径的原则,与上一轮的进行比较,刷新为:[20, –1, 11],选定6为下一轮的前驱节点。同时取定6的最短路径为11,路线:1->3->6。
第四轮,同上,以6为前驱节点,得到4和5的计算距离为[20, 20],与上一轮进行比较,刷新后为[20, 20],二者相等只剩下两个节点,并且二者想等,剩下的计算已经不需要了。则两个节点的最短路径都为20。整个计算结束。4的最短路径为20,路线:1->3->4。5的最短路径为20,路线:1->3->6->5。
如果二者不相等,则还需要进行第五轮,先确定二者中的一个的最短路径和路线,再取定剩下的。直到整个5次循环都完成。
伪代码
function Dijkstra(G, w, s)
for each vertex v in V[G] //初始化
d[v] := infinity //将各点的已知最短距离先设成无穷大
previous[v] := undefined // 各点的已知最短路径上的前趋都未知
d[s] := 0 // 因为出发点到出发点间不需移动任何距离,所以可以直接将s到s的最小距离设为0
S := empty set
Q := set of all vertices
while Q is not an empty set // Dijkstra算法主体
u := Extract_Min(Q)
S.append(u)
for each edge outgoing from u as (u,v)
if d[v] > d[u] + w(u,v) // 拓展边(u,v)。w(u,v)为从u到v的路径长度。
d[v] := d[u] + w(u,v) // 更新路径长度到更小的那个和值。
previous[v] := u // 记录前面顶点
Code
public class Dijkstra
{
public static final int M = -1; public static void main(String[] args)
{
int[][] map1 = {
{ 0, 7, 9, M, M, 14 },
{ 7, 0, 10, 15, M, M },
{ 9, 10, 0, 11, M, 2 },
{ M, 15, 11, 0, 6, M },
{ M, M, M, 6, 0, 9 },
{ 14, M, 2, M, 9, 0 } }; int orig = 0;
int[] shortPath = Dijsktra(map1, orig); if (shortPath == null)
{
return;
} for (int i = 0; i < shortPath.length; i++)
{
System.out.println("从" + (orig + 1) + "出发到" + (i + 1) + "的最短距离为:"
+ shortPath[i]);
}
} public static int[] Dijsktra(int[][] weight, int orig)
{
int n = weight.length; // 顶点个数 int[] shortest = new int[n]; // 存放从start到其他各点的最短路径
boolean[] visited = new boolean[n]; // 标记当前该顶点的最短路径是否已经求出,true表示已求出 // 初始化,第一个顶点求出
shortest[orig] = 0;
visited[orig] = true; for (int count = 0; count != n - 1; count++) // 要加入n-1个顶点
{
// 选出一个距离初始顶点最近的未标记顶点
int k = M;
int dmin = M;
for (int i = 0; i < n; i++)
{
if (!visited[i] && weight[orig][i] != M)
{
if (dmin == -1 || dmin > weight[orig][i])
{
dmin = weight[orig][i];
k = i;
}
}
} // 正确的图生成的矩阵不可能出现K == M的情况
if (k == M)
{
System.out.println("the input map matrix is wrong!");
return null;
} shortest[k] = dmin;
visited[k] = true; // 以k为中间点,修正从原点到未访问各点的距离
for (int i = 0; i < n; i++)
{
if (!visited[i] && weight[k][i] != M)
{
int callen = dmin + weight[k][i];
if (weight[orig][i] == M || weight[orig][i] > callen)
{
weight[orig][i] = callen;
}
}
}
} return shortest;
}
}
我是天王盖地虎的分割线
参考:http://codeway.co/dijkstra%E7%AE%97%E6%B3%95%E6%B1%82%E8%A7%A3%E6%9C%80%E7%9F%AD%E8%B7%AF%E5%BE%84%E5%88%86%E6%9E%90/
Dijkstra(迪杰斯特拉)算法求解最短路径的更多相关文章
- c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法
c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...
- 图解Dijkstra(迪杰斯特拉)算法+代码实现
简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的 ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
- (Dijkstra)迪杰斯特拉算法-最短路径算法
迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图 ...
- 算法与数据结构(六) 迪杰斯特拉算法的最短路径(Swift版)
上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法.首先我们先聊一下什么是最短路径,这个还是比较好理解的.比如我要从北京到济南,而 ...
- js迪杰斯特拉算法求最短路径
1.后台生成矩阵 名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574 double[,] arr = new double ...
- 最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)
Dijkstra算法 ———————————最后更新时间:2011.9.25———————————Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. ...
- 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)
文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...
- C# 迪杰斯特拉算法 Dijkstra
什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Gener ...
随机推荐
- 用Python开始机器学习(3:数据拟合与广义线性回归)
机器学习中的预测问题通常分为2类:回归与分类. 简单的说回归就是预测数值,而分类是给数据打上标签归类. 本文讲述如何用Python进行基本的数据拟合,以及如何对拟合结果的误差进行分析. 本例中使用一个 ...
- Python 面向对象编程——访问限制
<无访问限制的对象> 在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑.但是,从前面Student类的定义来看(见:Py ...
- 什么是DHTML?
DHTML是近年来网络发展进程中最振奋人心也最具实用性的创新之一.它是一种通过各种技术的综合发展而得以实现的概念(当然,不同的浏览器,实现的程度也不同),这些技术包括Javascript, VBScr ...
- hdu 4463 第37届ACM/ICPC杭州赛区K题 最小生成树
题意:给坐标系上的一些点,其中有两个点已经连了一条边,求最小生成树的值 将已连接的两点权值置为0,这样一定能加入最小生成树里 最后的结果加上这两点的距离即为所求 #include<cstdio& ...
- Android MediaCodec 的实例化方法
*由于作者水平限制,文中难免有错误和不恰当之处,望批评指正. *转载请注明出处:http://www.cnblogs.com/roger-yu/ MediaCodec的实例化方法主要有两种: 1.使用 ...
- CDOJ 1401 谭爷的黑暗沙拉 数学
谭爷的黑暗沙拉 题目连接: http://mozhu.today/#/problem/show/1401 Description 谭爷有\(n\)种不同种类的食材(水果&蔬菜),他想做出一份总 ...
- hdoj 5113 Black And White DFS+剪枝
Black And White Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others) T ...
- 几个常用的Eclipse插件
用Eclipse Neon做ROS开发需要几个常用的插件,可以大大加速开发的进度. 1.常用插件 a.CMake Editer 地址:http://cmakeed.sourceforge.net/ec ...
- SQL Structured Query Language(结构化查询语言) 数据库
SQL是Structured Query Language(结构化查询语言)的缩写. SQL是专为数据库而建立的操作命令集,是一种功能齐全的数据库语言. 在使用它时,只需要发出“做什么”的命令,“怎么 ...
- ASP.NET Web Api 实现数据的分页
前言 这篇文章我们将使用不同的方式实现手动分页(关于高端大气上档次的OData本文暂不涉及,但有可能会在系列的后期介绍,还没确定...),对于分页的结果,我们将采用2种不同的方式响应给客户端(1.将分 ...