1008 选数

2002年NOIP全国联赛普及组

时间限制: 1 s
空间限制: 128000 KB
题目等级 : 黄金 Gold
题目描述 Description

已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
    3+7+12=22  3+7+19=29  7+12+19=38  3+12+19=34。
  现在,要求你计算出和为素数共有多少种。
  例如上例,只有一种的和为素数:3+7+19=29)。

输入描述
Input Description

 键盘输入,格式为:
  n , k (1<=n<=20,k<n)
  x1,x2,…,xn (1<=xi<=5000000)

输出描述
Output Description

屏幕输出,格式为:
  一个整数(满足条件的种数)。

样例输入
Sample Input

4 3
3 7 12 19

样例输出
Sample Output

1

数据范围及提示 Data Size & Hint

(1<=n<=20,k<n)
(1<=xi<=5000000)

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
const int maxn=;
int a[maxn];
int ans,n,k;
bool isprim(int num)
{
for(int i=;i<=sqrt(num);i++)
if(num%i==)
return false;
return true;
}//朴素的判定素数的方法
void dfs(int cur,int cnt,int num)//cut表示选了几个数,cnr表示从第几个数开始,num表示答案是什么
{
if(cnt==k)
{
if(isprim(num))
ans++;
return;
}
for(int i=cur;i<=n;i++)
dfs(i+,cnt+,num+a[i]);
}//dfs暴力筛选
int main()
{
cin>>n>>k;
for(int i=;i<=n;i++)
cin>>a[i];
dfs(,,);
cout<<ans<<endl;
return ;
}

NOIP 2002提高组 选数 dfs/暴力的更多相关文章

  1. [NOIP 2002普及组]产生数(floyd+高精度)

    https://www.luogu.org/problem/P1037 题目描述 给出一个整数 n(n<1030) 和 k 个变换规则(k<=15). 规则: 一位数可变换成另一个一位数: ...

  2. NOIP 2002 提高组 字串变换

    题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B ...

  3. NOIP 2001 提高组 题解

    NOIP 2001 提高组 题解 No 1. 一元三次方程求解 https://vijos.org/p/1116 看见有人认真推导了求解公式,然后猥琐暴力过的同学们在一边偷笑~~~ 数据小 暴力枚举即 ...

  4. noip 2014 提高组初赛

    noip 2014 提高组初赛 一. TCP协议属于哪一层协议( ) A. 应用层 B. 传输层 C. 网络层 D. 数据链路层 B TCP(传输控制协议) 若有变量int a; float: x, ...

  5. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  6. [NOIp 1998 提高组]Probelm 2 连接多位数【2011百度实习生笔试题】

    /*====================================================================== [NOIp 1998 提高组]Probelm 2 连接 ...

  7. 最优贸易 NOIP 2009 提高组 第三题

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  8. NOIP 2006 提高组 t1 能量项链

    题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定 ...

  9. NOIP 2014 提高组 题解

    NOIP 2014 提高组 题解 No 1. 生活大爆炸版石头剪刀布 http://www.luogu.org/problem/show?pid=1328 这是道大水题,我都在想怎么会有人错了,没算法 ...

随机推荐

  1. LinuxUSB驱动程序调试--009:编写应用程序---验证协议【转】

    转自:http://biancheng.dnbcw.info/linux/257411.html [1] 如何编译X86下的 uBuntu APP---非常简单:            gcc -o ...

  2. NB-iot 和 emtc两种技术区别

    此前有报道称,工信部正在拟定推动窄频物联网(NB-IoT)标准化,并对NB-IoT模块外形.封装以及针脚定义等提出新规范.业内人士认为,标准出台后将促进物联网规模化商用全面提速,迎来行业成长爆发期. ...

  3. kettle简单插入与更新

    Kettle简介:Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,数据抽取高效稳定.Kettle 中文名称叫水壶,该项目的主程序员MATT 希望 ...

  4. SQLAlchemy-对象关系教程ORM-一对多(外键),一对一,多对多

    一:一对多 表示一对多的关系时,在子表类中通过 foreign key (外键)引用父表类,然后,在父表类中通过 relationship() 方法来引用子表的类. 在一对多的关系中建立双向的关系,这 ...

  5. centos7的防火墙(firewalld)

    Centos7中默认将原来的防火墙iptables升级为了firewalld,firewalld跟iptables比起来至少有两大好处: 1.firewalld可以动态修改单条规则,而不需要像ipta ...

  6. acm专题---KMP模板

    KMP的子串长n,模式串长m,复杂度o(m+n),朴素做法的复杂度o((n-m+1)*m) 觉得大话数据结果上面这个讲得特别好 改进版本的KMP leetcode 28. Implement strS ...

  7. Codeforces 2B The least round way(dp求最小末尾0)

    题目链接:http://codeforces.com/problemset/problem/2/B 题目大意: 给你一个nxn的矩形,找到一条从左上角到右下角的路径,使得该路径上所有数字的乘积的末尾0 ...

  8. FZU 1901 Period II(KMP循环节+公共前后缀)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1901 题目大意:题目大意求出所有p满足s[i]=s[i+p](i<=len-p) 解题思路: 其实就是要 ...

  9. P2184 【贪婪大陆】

    看到全是线段树或者树状数组写法,就来提供一发全网唯一cdq分治三维偏序解法吧 容易发现,这个题的查询就是对于每个区间l,r,查询有多少个修改区间li,ri与l,r有交集 转化为数学语言,就是查询满足l ...

  10. kafka基本版与kafka acl版性能对比(单机版)

    一.场景 线上已经有kafka集群,服务运行稳定.但是因为产品升级,需要对kakfa做安全测试,也就是权限验证. 但是增加权限验证,会不会对性能有影响呢?影响大吗?不知道呀! 因此,本文就此来做一下对 ...