ZCMU 1019: 分金币
解题思路:
附上刘汝佳老师的解题过程:
首先最终每个人的金币数量可以计算出来,它等于金币总数除以人数n。接下来用M来表示每个人最终拥有的金币数。
现在假设编号为 i 的人初始有Ai 枚金币,对于1号来说,他给了4号x1枚金币,还剩Ai -x1枚金币;但是2号给了他x2枚金币,所以还剩A1-x1+x2枚金币。所以A1-x1+x2=M。同理对于第2个人,有A2-x2+x3=M。最终得到n个方程,实际上只有n-1个有用
尝试用x1表示出其他的xi ,则本题就变成了单变量的极值问题。
对于第1个人,A1-x1+x2=M → x2=M-A1+x1=x1-C1(规定C1=A1-M,下面类似)
对于第2个人,A2-x2+x3=M → x3=M-A2+x2=2M-A1-A2+x1=x1-C2
对于第3个人,A3-x3+x4=M → x4=M-A3+x3=3M-A1-A2-A3+x1=x1-C3
...
对于第n个人,An-xn+x1=M。这是一个多余的等式。
我们希望所有xi 的绝对值之和尽量小,即|x1|+|x1-C1|+|x1-C2|+...+|x1-Cn-1|要最小。注意到|x1-Ci|的几何意义是数轴上的点x1到Ci 的距离,所以问题变成了:给定数轴上n个点,找出一个到他们距离之和尽量小的点。
而这个点就是中位数,它实在是太优美,太巧妙了,而且不少其他问题也能用的上。
代码:
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
long long a[],b[];
int main()
{
int n,i;
long long k,sum,t;
while(~scanf("%d",&n))
{
k=;
for(i=;i<=n;i++)
{
scanf("%lld",&a[i]);
k=k+a[i];
}
k=k/n;
b[]=;
for(i=;i<n;i++)
{
b[i]=b[i-]+a[i]-k;
}
sort(b,b+n);
t=b[n/];
sum=;
for(i=;i<n;i++)
{
sum=sum+abs(t-b[i]);
}
printf("%lld\n",sum);
}
return ;
}
ZCMU 1019: 分金币的更多相关文章
- 分金币 bzoj 3293
分金币(1s 128M) coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...
- 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞
3293: [Cqoi2011]分金币 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 854 Solved: 476[Submit][Status] ...
- 【贪心+中位数】【UVa 11300】 分金币
(解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...
- 【BZOJ3293】分金币(贪心)
[BZOJ3293]分金币(贪心) 题面 BZOJ 洛谷 题解 和上一题一样啊. #include<cstdio> #include<cmath> #include<al ...
- BZOJ3293: [Cqoi2011]分金币(数学)
3293: [Cqoi2011]分金币 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1596 Solved: 969[Submit][Status ...
- cogs 1430. [UVa 11300]分金币
1430. [UVa 11300]分金币 ★☆ 输入文件:Wealth.in 输出文件:Wealth.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 圆桌旁坐着 ...
- Java实现蓝桥杯分金币
分金币 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币, 最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. 比如,n=4,且4个人 ...
- java实现第五届蓝桥杯海盗分金币
海盗分金币 有5个海盗,相约进行一次帆船比赛. 比赛中天气发生突变,他们被冲散了. 恰巧,他们都先后经过途中的一个无名的荒岛,并且每个人都信心满满,觉得自己是第一个经过该岛的人. 第一个人在沙滩上发现 ...
- [luogu3878][TJOI2010]分金币【模拟退火】
题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 分析 根据模拟退火的基本套路,先随机分两堆金币 ...
随机推荐
- 根据自定义区域裁剪ArcGIS切片地图服务
切片地图服务是访问地图最快捷的服务方式.假如要根据地理区域对切图进行访问控制,往往只能针对不同地理区域制作相应的地图,并发布为切片地图服务.而一般在切图的时候又是按全区域实施的,所以给切片管理者造成不 ...
- CRM系统新思维
客户关系管理系统(CRM系统)是管理公司当前以及未来潜在客户的系统,其主要目的是通过优化客户关系实现公司销售业绩的长期增长,它是企业信息系统的核心之一.目前,移动互联网.大数据以及人工智能技术发展日新 ...
- xcrun: error: invalid active developer path (/Applications/Xcode.app/Contents/Developer)解决办法
背景 mac下卸载了xcode,使用git等命令时就提示错误.invalid active path(Applications/Xcode.app/Contents/Developer),这种情况可以 ...
- 深度学习GPU集群管理软件 OpenPAI 简介
OpenPAI:大规模人工智能集群管理平台 2018年5月22日,在微软举办的“新一代人工智能开放科研教育平台暨中国高校人工智能科研教育高峰论坛”上,微软亚洲研究院宣布,携手北京大学.中国科学技术大学 ...
- mvp 在 flutter 中的应用
在 Android 应用程序开发过程中,我们经常会用到一些所谓的架构方法,如:mvp,mvvm,clean等.之所以这些方法会被推崇是因为他们可以大大的解耦我们的代码的功能模块,让我们的代码在项目中后 ...
- java 对象
对象可以看成是静态属性和动态属性的封装体.静态属性——成员变量:动态属性——方法. 1.汇编语言是对机器语言的抽象. 2.面向过程的语言是对汇编语言的抽象.属性和方法分离,不是封装在一起的,复用性 ...
- js 中文长字符截短&关键字符隐藏 自定义过滤器
两个非常简单的过滤器:隐藏关键字符和字符截短.同样也可以迁移到ng和原生js直接使用(去掉avalon.filters声明即可).后期还有不错的过滤器,还往这里面加 keyword:avalon,js ...
- [翻译] 扩张卷积 (Dilated Convolution)
英文原文: Dilated Convolution 简单来说,扩张卷积只是运用卷积到一个指定间隔的输入.按照这个定义,给定我们的输入是一个2维图片,扩张率 k=1 是通常的卷积,k=2 的意思是每个输 ...
- MySQL无法启动、服务没有报告任何错误&初次登陆错误的解决
先以管理员身份运行cmd(右键单击左下角win菜单) 输入mysqld -install,net start mysql,下图是返回结果.报错情况以及修正之后的全过程 启动失败之后输入mysqld - ...
- MySQL InnoDB锁机制之Gap Lock、Next-Key Lock、Record Lock解析
MySQL InnoDB支持三种行锁定方式: l 行锁(Record Lock):锁直接加在索引记录上面,锁住的是key. l 间隙锁(Gap Lock):锁定索引记录间隙,确保索引记录的间隙 ...