1、

def read_corpus(path, eos="</s>"):
data = [ ]
with open(path) as fin:
for line in fin:
data += line.split() + [ eos ]
return data

来看一下这一段代码运行后产生的数据会是什么样子的

data = [ ]
eos="</s>"
path = '/home/lai/下载/txt'
with open(path) as fin:
for line in fin:
data += line.split() + [ eos ]
print(data)

这里的txt文件如下

no it was n't black monday
but while the new york stock exchange did n't fall apart friday as the dow jones industrial average plunged N points most of it in the final hour it barely managed to stay this side of chaos
some circuit breakers installed after the october N crash failed their first test traders say unable to cool the selling panic in both stocks and futures

结果:

['no', 'it', 'was', "n't", 'black', 'monday', '</s>', 'but', 'while', 'the', 'new', 'york', 'stock', 'exchange', 'did', "n't", 'fall', 'apart', 'friday', 'as', 'the', 'dow', 'jones', 'industrial', 'average', 'plunged', 'N', 'points', 'most', 'of', 'it', 'in', 'the', 'final', 'hour', 'it', 'barely', 'managed', 'to', 'stay', 'this', 'side', 'of', 'chaos', '</s>', 'some', 'circuit', 'breakers', 'installed', 'after', 'the', 'october', 'N', 'crash', 'failed', 'their', 'first', 'test', 'traders', 'say', 'unable', 'to', 'cool', 'the', 'selling', 'panic', 'in', 'both', 'stocks', 'and', 'futures', '</s>']

输出的是单个单词组成的序列,每一行的结尾以</s>结尾

2.

class EmbeddingLayer(nn.Module):#为语料中每一个单词对应的其相应的词向量
def __init__(self, n_d, words, fix_emb=False):
super(EmbeddingLayer, self).__init__()
word2id = {}
for w in words:
if w not in word2id:
word2id[w] = len(word2id)#把文本映射到数字上。 self.word2id = word2id
self.n_V, self.n_d = len(word2id), n_d#n_V应该是指词库大小,n_d指hidden state size
self.embedding = nn.Embedding(self.n_V, n_d)#赋予每个单词相应的词向量 def forward(self, x):
return self.embedding(x) def map_to_ids(self, text):#映射
return np.asarray([self.word2id[x] for x in text],
dtype='int64'
)

我构造了一个可以运行的简易程序进行理解

import numpy as np
data = [ ("me gusta comer en la cafeteria".split(), "SPANISH"),
("Give it to me".split(), "ENGLISH"),
("No creo que sea una buena idea".split(), "SPANISH"),
("No it is not a good idea to get lost at sea".split(), "ENGLISH") ] test_data = [("Yo creo que si".split(), "SPANISH"),
("it is lost on me".split(), "ENGLISH")] #将文字映射到数字
word_to_ix = {}
for sent, _ in data + test_data:
for word in sent:
if word not in word_to_ix:
word_to_ix[word] = len(word_to_ix)
print(word_to_ix)
text={'creo': 10, 'idea': 15, 'a': 18}
把一个句子sentence通过word_to_ix转换成数字化序列.
print(np.asarray([word_to_ix[x] for x in text],
dtype='int64'))
print(text)

结果:

{'Give': 6, 'lost': 21, 'No': 9, 'cafeteria': 5, 'comer': 2, 'en': 3, 'at': 22, 'not': 17, 'good': 19, 'to': 8, 'una': 13, 'Yo': 23, 'me': 0, 'a': 18, 'on': 25, 'creo': 10, 'get': 20, 'it': 7, 'idea': 15, 'buena': 14, 'is': 16, 'si': 24, 'que': 11, 'la': 4, 'gusta': 1, 'sea': 12}
[15 10 18]
{'idea': 15, 'creo': 10, 'a': 18}

所以这一部分先将文字映射到数字,然后把一个句子sentence通过word_to_ix转换成数字化序列.

关于读入数据的总结

用代码中定义的类读入自己的数据

import time
import random
import math import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable def read_corpus(path, eos="</s>"):
data = [ ]
with open(path) as fin:
for line in fin:
data += line.split() + [ eos ]
return data def create_batches(data_text, map_to_ids, batch_size):
data_ids = map_to_ids(data_text)
print(data_ids)
N = len(data_ids)
L = ((N-1) // batch_size) * batch_size
x = np.copy(data_ids[:L].reshape(batch_size,-1).T)
y = np.copy(data_ids[1:L+1].reshape(batch_size,-1).T)
x, y = torch.from_numpy(x), torch.from_numpy(y)
x, y = x.contiguous(), y.contiguous() return x,y class EmbeddingLayer(nn.Module):#为语料中每一个单词对应的其相应的词向量
def __init__(self, n_d, words, fix_emb=False):
super(EmbeddingLayer, self).__init__()
word2id = {}
for w in words:
if w not in word2id:
word2id[w] = len(word2id)#把文本映射到数字上。 self.word2id = word2id
self.n_V, self.n_d = len(word2id), n_d#n_V应该是指词库大小,n_d指hidden state size
self.embedding = nn.Embedding(self.n_V, n_d)#赋予每个单词相应的词向量 def forward(self, x):
return self.embedding(x) def map_to_ids(self, text):#映射
return np.asarray([self.word2id[x] for x in text],
dtype='int64'
)
train = read_corpus('/home/lai/下载/train.txt')
print(train)
model = EmbeddingLayer(10,train) print(model)
map_to_ids = model.map_to_ids
print(map_to_ids)
train = create_batches(train, map_to_ids, batch_size=45)
print(train)
print(model.embedding.weight)

结果

['no', 'it', 'was', "n't", 'black', 'monday', '</s>', 'but', 'while', 'the', 'new', 'york', 'stock', 'exchange', 'did', "n't", 'fall', 'apart', 'friday', 'as', 'the', 'dow', 'jones', 'industrial', 'average', 'plunged', 'N', 'points', 'most', 'of', 'it', 'in', 'the', 'final', 'hour', 'it', 'barely', 'managed', 'to', 'stay', 'this', 'side', 'of', 'chaos', '</s>', 'some', 'circuit', 'breakers', 'installed', 'after', 'the', 'october', 'N', 'crash', 'failed', 'their', 'first', 'test', 'traders', 'say', 'unable', 'to', 'cool', 'the', 'selling', 'panic', 'in', 'both', 'stocks', 'and', 'futures', '</s>']
EmbeddingLayer (
(embedding): Embedding(59, 10)
)
<bound method EmbeddingLayer.map_to_ids of EmbeddingLayer (
(embedding): Embedding(59, 10)
)>
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3 15 16 17 18 9 19 20 21 22
23 24 25 26 27 1 28 9 29 30 1 31 32 33 34 35 36 27 37 6 38 39 40 41 42
9 43 24 44 45 46 47 48 49 50 51 33 52 9 53 54 28 55 56 57 58 6]
( Columns 0 to 12
0 1 2 3 4 5 6 7 8 9 10 11 12 Columns 13 to 25
13 14 3 15 16 17 18 9 19 20 21 22 23 Columns 26 to 38
24 25 26 27 1 28 9 29 30 1 31 32 33 Columns 39 to 44
34 35 36 27 37 6
[torch.LongTensor of size 1x45]
, Columns 0 to 12
1 2 3 4 5 6 7 8 9 10 11 12 13 Columns 13 to 25
14 3 15 16 17 18 9 19 20 21 22 23 24 Columns 26 to 38
25 26 27 1 28 9 29 30 1 31 32 33 34 Columns 39 to 44
35 36 27 37 6 38
[torch.LongTensor of size 1x45]
)
Parameter containing:
0.4376 -1.1509 -0.1407 -0.6956 -0.7292 -0.1944 0.8925 0.0688 -0.0560 2.5919
-0.7855 -0.0448 -0.8069 -1.4774 0.2366 0.3967 -0.0706 -0.4602 1.0099 -0.0734
-1.7748 -0.5265 0.4334 -0.7525 -0.0537 0.3966 -1.1800 0.2774 -2.2269 -0.4814
-0.9325 1.7541 0.6094 -0.1564 0.8379 -0.4577 -1.3616 -2.1115 -0.7025 -0.6662
1.0896 -0.1558 -1.1896 -0.0955 -2.7685 0.9485 1.1311 -1.1454 -0.4689 1.0410
1.2227 1.8617 0.9243 -0.3036 0.2639 -0.6933 -0.4147 -0.4482 2.7447 0.0573
1.0230 0.0484 -1.0139 -0.4291 0.6560 0.6911 -1.2519 0.9809 0.5843 0.2033
-0.1128 -0.2149 1.2092 1.5636 -0.6737 1.0226 1.0155 -0.6230 -2.1714 -0.0226
0.1947 1.0509 0.8694 1.5002 -0.3447 -0.2618 1.3267 0.0795 0.5041 -0.9763
1.0146 0.9310 -1.2894 1.3288 -0.4146 0.1909 -0.3760 1.6011 0.7943 0.6290
-0.2122 -1.4665 1.4775 0.5200 1.2882 -0.4101 0.4479 0.4447 -0.9597 1.7938
0.8239 0.5278 -0.0036 0.8840 0.1069 0.2539 -0.7887 0.1271 0.8512 0.3766
-0.5573 0.6985 1.0623 -1.3442 1.0792 0.4055 0.3625 1.7664 -0.3776 0.0266
-0.2160 0.6872 1.6154 -0.5749 2.6781 1.1730 -0.9687 -1.2116 -0.9464 0.5248
0.0916 0.3761 -1.0593 -0.6794 1.6780 -0.2040 0.8541 -0.0384 1.5180 0.6114
-0.0321 0.5364 0.3896 -0.4864 -1.0080 -1.0698 0.1935 0.3896 -0.5745 -0.0273
1.6301 -0.2652 -0.5325 -0.9380 0.3457 -2.0038 -0.0775 -0.7555 -0.8524 -0.9321
0.0364 -0.4582 -0.3213 -0.9254 -1.0728 -0.1355 0.0993 -0.3186 2.3914 -1.5035
0.0652 0.7371 0.9628 1.1530 -0.4044 -0.7131 -0.8299 1.6627 -0.8451 -1.0463
-0.3744 0.6010 -2.4774 1.6569 -0.5589 -0.6512 -1.3728 -1.7573 1.1402 1.6838
0.2883 -1.3225 1.2454 0.4222 -0.5544 -1.5851 1.7119 1.3759 1.2300 -0.0676
0.6371 1.4258 -0.0222 1.2869 0.8767 -0.2959 -0.5973 -2.6143 -0.4366 0.9691
0.3215 0.6463 0.4688 0.4125 0.1800 0.0441 0.0375 0.4195 1.5675 0.7011
0.5407 1.4961 -1.5759 -1.7088 -0.5991 1.2169 0.9620 -1.7427 -0.0108 -0.3502
-0.0906 0.1109 -0.4118 1.0876 0.8098 -0.8063 -0.2878 0.8896 -0.6304 0.0683
0.6119 0.4786 0.6667 0.5702 -1.0531 0.4991 0.0538 1.1451 -0.7958 -0.0557
1.3344 1.7192 -1.9320 2.1928 -0.1014 0.6543 -0.1026 -0.6506 -0.2592 0.0537
-1.0320 1.9222 -0.6615 0.8046 -0.7667 -0.6775 -0.4904 0.6054 0.2837 -1.2075
0.6694 -0.7456 -0.9112 0.0961 0.3517 -0.6020 -0.9233 0.8343 0.0364 -0.5247
-1.4859 -0.8458 0.1642 0.2666 -2.9028 0.5945 0.0080 0.2036 1.9158 0.4553
1.9948 -0.1500 -1.9221 -0.2734 0.7872 0.1108 -0.1790 -0.0549 0.8124 0.1027
-0.8605 2.0634 -1.1081 0.3951 0.6214 0.1754 0.4764 0.9175 -0.3207 -0.3007
0.3095 1.4426 -0.6971 -1.1740 0.7263 0.0415 -0.4804 0.2983 0.9156 0.6196
-0.0862 -0.6351 -2.7732 1.2055 0.8422 -1.9189 1.4048 -0.8839 0.0811 -1.1528
-0.5930 1.2625 0.5828 -0.8534 0.5789 -1.8812 1.2968 1.1347 -1.3243 0.5715
-0.3339 0.5853 0.1010 1.2207 1.0524 -1.5834 -2.1429 0.7626 1.6698 0.7554
-1.0038 1.6710 -0.6395 -0.3707 0.3491 0.0697 0.2043 0.2882 1.3192 -2.2766
1.1236 -0.3770 -0.4992 0.3957 -1.0027 0.7676 1.3439 1.1695 -0.0786 0.0372
0.1163 -0.4600 -1.2990 -0.6624 0.6378 0.4357 -0.2231 0.8826 0.7718 0.6312
-0.9322 0.7925 1.0265 -0.9309 0.3586 -0.2663 0.7529 -0.8931 0.3230 1.0597
0.0599 0.3668 0.2117 -0.3740 -1.2131 -0.7596 -0.1819 0.4357 3.0936 0.7486
-0.7667 -0.3219 -0.3511 -0.6781 0.8756 1.2539 0.7989 0.6129 0.3743 0.6551
0.8160 -0.3391 -0.4200 0.0984 0.0863 -1.1544 0.6204 -0.6724 0.2659 0.5388
0.4748 0.5738 -0.8648 0.3691 -0.3480 -0.1510 0.8260 0.6924 0.0053 -0.6213
0.2044 0.7698 0.7638 0.3532 0.7197 0.9445 -1.0761 0.0882 0.5684 0.4562
-1.0330 -1.0507 -1.1679 0.0608 1.3512 0.2507 0.1740 -0.1574 -0.0552 0.6377
1.3845 1.3252 2.5621 -0.5241 0.4334 -0.5092 0.1271 -1.3832 0.7112 0.1932
-0.1659 0.2740 -0.6393 -0.2937 -0.2887 -0.7221 -1.1947 -1.0431 1.1029 -1.1171
-0.2033 -0.5364 -0.4530 -2.4491 -1.2100 -1.5732 0.4191 -2.8109 0.3529 -0.7417
0.1667 -0.0072 0.8795 -0.1538 0.5413 1.1036 -0.5249 -0.8432 0.0563 -0.2998
-0.4226 0.6448 -0.4215 0.4342 -0.6593 -0.2078 1.4768 1.1829 0.8084 -2.0024
2.1950 0.8189 0.4104 0.4159 -1.1775 -2.3510 -0.5108 -2.5914 -0.5550 0.7188
-0.2978 0.1422 -0.0790 -1.6337 -0.4799 -0.9623 -0.9411 0.8321 -1.6386 -0.7785
-0.3109 0.5793 0.5437 0.3324 -0.9796 1.4794 0.0364 0.6472 0.7203 1.5878
0.0685 1.5637 -0.4545 -2.2541 0.5353 0.1305 1.3973 -1.2065 -0.5373 1.3352
0.0670 -0.6708 -0.4448 0.1797 -0.6935 1.4199 0.2560 0.3542 -1.0556 -1.1745
-0.3048 1.7749 -0.5777 -0.7029 0.9634 -0.9982 1.1929 1.5102 0.7618 -0.3569
0.1294 -1.6825 -0.8473 -0.7886 0.3286 -0.2387 -0.4245 -0.3130 0.2273 -1.0860
-0.7929 -1.0838 0.1994 -0.4874 0.6568 0.1065 1.8086 0.2142 -1.1657 -0.2313
[torch.FloatTensor of size 59x10]

我把这个过程的中间结果全都打印出来,便于理解,对于model.embedding.weight,这个embedding层的weight应该是指每个单词所对应的向量

3.

def init_weights(self):        
val_range = (3.0/self.n_d)**0.5
for p in self.parameters():
if p.dim() > 1: # matrix
p.data.uniform_(-val_range, val_range)
else:
p.data.zero_()

p.data.uniform_(-val_range, val_range)和p.data.zero_()

我自己构造了一个模型用以探究其功能

import time
import random
import math import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable def read_corpus(path, eos="</s>"):
data = [ ]
with open(path) as fin:
for line in fin:
data += line.split() + [ eos ]
return data def create_batches(data_text, map_to_ids, batch_size):
data_ids = map_to_ids(data_text)
print(data_ids)
N = len(data_ids)
L = ((N-1) // batch_size) * batch_size
x = np.copy(data_ids[:L].reshape(batch_size,-1).T)
y = np.copy(data_ids[1:L+1].reshape(batch_size,-1).T)
x, y = torch.from_numpy(x), torch.from_numpy(y)
x, y = x.contiguous(), y.contiguous() return x,y class EmbeddingLayer(nn.Module):#为语料中每一个单词对应的其相应的词向量
def __init__(self, n_d, words, fix_emb=False):
super(EmbeddingLayer, self).__init__()
word2id = {}
for w in words:
if w not in word2id:
word2id[w] = len(word2id)#把文本映射到数字上。 self.word2id = word2id
self.n_V, self.n_d = len(word2id), n_d#n_V应该是指词库大小,n_d指hidden state size
self.embedding = nn.Embedding(self.n_V, n_d)#赋予每个单词相应的词向量 def forward(self, x):
return self.embedding(x) def map_to_ids(self, text):#映射
return np.asarray([self.word2id[x] for x in text],
dtype='int64'
)
train = read_corpus('/home/lai/下载/train.txt')
print(train)
model = EmbeddingLayer(10,train)
for param in model.parameters():
print(param.data.uniform_(0,2))
print(param.data)

结果:

['no', 'it', 'was', "n't", 'black', 'monday', '</s>', 'but', 'while', 'the', 'new', 'york', 'stock', 'exchange', 'did', "n't", 'fall', 'apart', 'friday', 'as', 'the', 'dow', 'jones', 'industrial', 'average', 'plunged', 'N', 'points', 'most', 'of', 'it', 'in', 'the', 'final', 'hour', 'it', 'barely', 'managed', 'to', 'stay', 'this', 'side', 'of', 'chaos', '</s>', 'some', 'circuit', 'breakers', 'installed', 'after', 'the', 'october', 'N', 'crash', 'failed', 'their', 'first', 'test', 'traders', 'say', 'unable', 'to', 'cool', 'the', 'selling', 'panic', 'in', 'both', 'stocks', 'and', 'futures', '</s>']

 1.4317  0.6596  0.0516  1.0376  0.1926  1.2600  0.0494  0.8796  1.9962  1.2159
0.2419 0.6704 0.1465 1.6639 1.5062 1.6871 0.7300 1.6097 0.6998 1.1892
0.8882 0.7436 0.7304 0.6540 1.0289 0.7935 1.9055 1.5515 1.2066 1.7531
1.1168 1.8315 0.7545 1.8267 0.9284 0.4486 0.5175 0.0532 0.8085 1.3437
0.2860 0.2907 0.8077 1.9553 1.2979 1.1078 0.0623 1.8027 1.8158 0.0852
1.0238 0.3384 0.5703 1.5060 1.0183 0.2247 0.2230 0.7064 0.3984 1.6884
1.1680 1.5321 0.9316 1.9031 0.5216 0.8028 0.8465 0.5166 1.5459 0.2865
0.6001 1.1145 1.6196 1.7692 1.7195 1.3123 0.4399 0.4006 1.2029 1.6420
1.9466 1.9689 0.8811 0.2398 1.3328 0.5307 1.6048 0.9328 1.6946 0.5598
1.9595 0.3396 1.4121 0.1757 0.3677 0.5584 1.9388 1.2118 1.3966 1.4618
1.2004 0.8745 0.4966 1.5487 0.7805 1.0708 1.8857 0.1973 1.1339 1.0490
0.4731 0.2265 1.0293 0.7514 1.3949 1.5742 0.0032 1.0001 1.6449 1.4519
0.2014 0.0456 1.2669 1.2988 0.9432 1.0757 0.6428 1.3084 0.7477 0.3753
0.1086 0.1842 1.3811 1.4472 0.6998 0.0028 1.8839 1.0238 1.6243 1.3262
0.6383 1.4817 0.2363 1.7802 1.2998 1.8367 1.9967 0.5028 0.0819 1.4886
0.2979 0.3566 0.5144 0.6787 0.8583 0.9256 0.8171 0.0482 0.6638 1.3788
0.4180 1.5806 1.0489 0.6587 1.6041 1.0644 1.9635 1.4030 1.5242 1.9292
1.7177 1.0168 1.4879 1.5941 0.6318 0.4966 1.9573 1.0276 1.8955 0.9595
1.3229 0.5519 0.0796 1.0840 0.2204 0.7510 0.6440 0.7307 1.0064 1.0647
0.5325 1.1621 1.0669 1.2276 0.2488 1.6607 1.6797 1.7445 0.7051 0.0290
1.9457 0.8071 1.9667 1.5591 1.6706 1.8955 0.2541 1.2218 0.5843 1.8493
0.8763 0.2127 0.5883 0.9636 1.9839 0.5030 0.8972 0.3293 1.1231 0.8687
1.3803 0.9248 1.3445 0.1882 1.3226 1.9621 1.0377 1.7566 1.6686 1.6855
1.9552 0.1764 0.6670 1.5401 0.4913 0.8954 0.3951 0.8991 1.5485 0.6603
0.5025 1.1702 1.8270 0.9304 0.4637 1.4306 0.5506 0.3712 0.0122 0.4379
0.2657 0.0599 1.8354 0.2358 1.7581 0.3380 0.9558 1.7275 0.5202 1.3801
0.7791 1.4060 0.6530 1.8742 0.5895 0.7742 1.7748 1.7141 1.2038 0.2918
1.0312 1.9371 0.8345 0.4569 0.0447 0.2415 1.3479 0.9809 0.0566 1.0656
0.3313 0.4801 0.3357 1.4143 0.6487 0.7692 1.0398 1.1538 0.8307 0.8231
1.4774 0.1299 1.1836 0.2659 1.4413 0.4059 0.2428 1.0973 0.5491 0.2169
1.8733 0.7073 0.6730 1.7413 1.1705 1.7082 1.0175 1.2589 1.9080 0.7648
1.0761 1.1880 1.5441 1.9458 0.5513 1.5324 1.3756 0.3201 1.6600 0.7143
1.8071 1.2422 1.5758 1.5677 1.5796 1.0328 0.3856 0.3648 0.5017 1.2543
1.8749 1.9269 0.2120 0.3971 0.4451 0.7651 0.6793 0.1512 1.7845 0.1911
1.2950 0.9356 1.0757 0.7603 0.6917 0.2891 1.3327 1.1102 0.3153 1.7074
0.9031 1.8973 1.6392 0.3516 0.4412 1.4444 1.4032 0.1110 1.1379 0.2283
0.4678 1.3409 0.6576 0.5351 1.2108 1.7777 0.5716 1.9060 1.4147 1.4487
0.9546 0.9840 0.3020 1.7696 0.9677 1.1206 1.5639 0.0437 0.1485 0.1437
1.0374 0.8910 1.7921 1.1207 0.4798 0.5863 0.0112 0.7735 0.8233 0.8936
1.1980 1.6834 0.5779 0.7173 1.5803 1.6196 0.1642 1.6706 1.9906 1.4089
0.2140 0.6833 1.6710 0.4645 0.0886 1.6945 0.8467 1.3290 1.7448 0.5405
1.2914 1.5487 0.8509 1.8434 1.3398 0.3215 0.5732 1.5421 1.5103 0.2807
1.4965 0.5448 1.0851 0.6836 1.4491 0.4040 1.8560 1.2288 1.4055 0.7298
0.6319 0.9501 0.5320 1.2168 0.0031 1.8810 1.5128 0.4442 1.3887 1.5603
0.5936 1.9980 1.4988 0.5884 1.9388 1.8275 0.1833 1.3767 1.2934 0.6319
0.2711 0.0854 0.7103 0.8877 1.9997 0.2341 0.7163 1.8445 1.4777 0.0532
1.1966 1.1512 1.8602 0.0552 1.7778 0.4180 1.0675 1.0646 1.6946 1.9979
1.4076 0.1683 0.6894 1.0616 1.8683 0.3648 0.9496 0.4799 1.5983 0.8257
1.5951 0.7438 0.4807 1.7440 1.1139 1.5855 0.3561 0.5960 0.6389 1.7573
1.3262 1.5965 0.1100 1.0414 0.1697 1.8125 0.8135 0.1712 0.8863 0.5336
0.4490 0.1233 0.0136 1.3416 0.2668 0.2091 0.8900 0.3823 1.3197 1.4936
1.3607 0.6022 0.9031 0.7420 0.5538 1.5407 1.1918 0.5104 1.7564 0.1658
0.4650 0.4523 1.3443 1.5691 1.0239 0.5898 0.8882 0.1892 1.0721 1.6908
1.0479 1.9074 0.3732 1.8763 1.5337 0.2918 1.9343 1.6055 0.0709 0.9326
0.6884 1.6136 1.1970 1.0819 0.3358 0.0234 0.4381 1.2239 1.1829 1.1254
1.4076 0.4704 0.1724 0.5579 0.1318 0.5537 0.2435 0.8490 0.7200 1.5814
0.2753 0.4727 0.5446 1.7038 0.8742 1.2662 1.3187 0.5939 1.2068 0.3514
0.6184 1.6217 1.0503 1.0958 1.9824 0.6737 0.3009 0.7889 1.8378 1.7559
0.6418 1.8355 0.7340 0.7232 0.6433 0.0288 1.3672 0.6466 0.3574 1.0760
[torch.FloatTensor of size 59x10] 1.4317 0.6596 0.0516 1.0376 0.1926 1.2600 0.0494 0.8796 1.9962 1.2159
0.2419 0.6704 0.1465 1.6639 1.5062 1.6871 0.7300 1.6097 0.6998 1.1892
0.8882 0.7436 0.7304 0.6540 1.0289 0.7935 1.9055 1.5515 1.2066 1.7531
1.1168 1.8315 0.7545 1.8267 0.9284 0.4486 0.5175 0.0532 0.8085 1.3437
0.2860 0.2907 0.8077 1.9553 1.2979 1.1078 0.0623 1.8027 1.8158 0.0852
1.0238 0.3384 0.5703 1.5060 1.0183 0.2247 0.2230 0.7064 0.3984 1.6884
1.1680 1.5321 0.9316 1.9031 0.5216 0.8028 0.8465 0.5166 1.5459 0.2865
0.6001 1.1145 1.6196 1.7692 1.7195 1.3123 0.4399 0.4006 1.2029 1.6420
1.9466 1.9689 0.8811 0.2398 1.3328 0.5307 1.6048 0.9328 1.6946 0.5598
1.9595 0.3396 1.4121 0.1757 0.3677 0.5584 1.9388 1.2118 1.3966 1.4618
1.2004 0.8745 0.4966 1.5487 0.7805 1.0708 1.8857 0.1973 1.1339 1.0490
0.4731 0.2265 1.0293 0.7514 1.3949 1.5742 0.0032 1.0001 1.6449 1.4519
0.2014 0.0456 1.2669 1.2988 0.9432 1.0757 0.6428 1.3084 0.7477 0.3753
0.1086 0.1842 1.3811 1.4472 0.6998 0.0028 1.8839 1.0238 1.6243 1.3262
0.6383 1.4817 0.2363 1.7802 1.2998 1.8367 1.9967 0.5028 0.0819 1.4886
0.2979 0.3566 0.5144 0.6787 0.8583 0.9256 0.8171 0.0482 0.6638 1.3788
0.4180 1.5806 1.0489 0.6587 1.6041 1.0644 1.9635 1.4030 1.5242 1.9292
1.7177 1.0168 1.4879 1.5941 0.6318 0.4966 1.9573 1.0276 1.8955 0.9595
1.3229 0.5519 0.0796 1.0840 0.2204 0.7510 0.6440 0.7307 1.0064 1.0647
0.5325 1.1621 1.0669 1.2276 0.2488 1.6607 1.6797 1.7445 0.7051 0.0290
1.9457 0.8071 1.9667 1.5591 1.6706 1.8955 0.2541 1.2218 0.5843 1.8493
0.8763 0.2127 0.5883 0.9636 1.9839 0.5030 0.8972 0.3293 1.1231 0.8687
1.3803 0.9248 1.3445 0.1882 1.3226 1.9621 1.0377 1.7566 1.6686 1.6855
1.9552 0.1764 0.6670 1.5401 0.4913 0.8954 0.3951 0.8991 1.5485 0.6603
0.5025 1.1702 1.8270 0.9304 0.4637 1.4306 0.5506 0.3712 0.0122 0.4379
0.2657 0.0599 1.8354 0.2358 1.7581 0.3380 0.9558 1.7275 0.5202 1.3801
0.7791 1.4060 0.6530 1.8742 0.5895 0.7742 1.7748 1.7141 1.2038 0.2918
1.0312 1.9371 0.8345 0.4569 0.0447 0.2415 1.3479 0.9809 0.0566 1.0656
0.3313 0.4801 0.3357 1.4143 0.6487 0.7692 1.0398 1.1538 0.8307 0.8231
1.4774 0.1299 1.1836 0.2659 1.4413 0.4059 0.2428 1.0973 0.5491 0.2169
1.8733 0.7073 0.6730 1.7413 1.1705 1.7082 1.0175 1.2589 1.9080 0.7648
1.0761 1.1880 1.5441 1.9458 0.5513 1.5324 1.3756 0.3201 1.6600 0.7143
1.8071 1.2422 1.5758 1.5677 1.5796 1.0328 0.3856 0.3648 0.5017 1.2543
1.8749 1.9269 0.2120 0.3971 0.4451 0.7651 0.6793 0.1512 1.7845 0.1911
1.2950 0.9356 1.0757 0.7603 0.6917 0.2891 1.3327 1.1102 0.3153 1.7074
0.9031 1.8973 1.6392 0.3516 0.4412 1.4444 1.4032 0.1110 1.1379 0.2283
0.4678 1.3409 0.6576 0.5351 1.2108 1.7777 0.5716 1.9060 1.4147 1.4487
0.9546 0.9840 0.3020 1.7696 0.9677 1.1206 1.5639 0.0437 0.1485 0.1437
1.0374 0.8910 1.7921 1.1207 0.4798 0.5863 0.0112 0.7735 0.8233 0.8936
1.1980 1.6834 0.5779 0.7173 1.5803 1.6196 0.1642 1.6706 1.9906 1.4089
0.2140 0.6833 1.6710 0.4645 0.0886 1.6945 0.8467 1.3290 1.7448 0.5405
1.2914 1.5487 0.8509 1.8434 1.3398 0.3215 0.5732 1.5421 1.5103 0.2807
1.4965 0.5448 1.0851 0.6836 1.4491 0.4040 1.8560 1.2288 1.4055 0.7298
0.6319 0.9501 0.5320 1.2168 0.0031 1.8810 1.5128 0.4442 1.3887 1.5603
0.5936 1.9980 1.4988 0.5884 1.9388 1.8275 0.1833 1.3767 1.2934 0.6319
0.2711 0.0854 0.7103 0.8877 1.9997 0.2341 0.7163 1.8445 1.4777 0.0532
1.1966 1.1512 1.8602 0.0552 1.7778 0.4180 1.0675 1.0646 1.6946 1.9979
1.4076 0.1683 0.6894 1.0616 1.8683 0.3648 0.9496 0.4799 1.5983 0.8257
1.5951 0.7438 0.4807 1.7440 1.1139 1.5855 0.3561 0.5960 0.6389 1.7573
1.3262 1.5965 0.1100 1.0414 0.1697 1.8125 0.8135 0.1712 0.8863 0.5336
0.4490 0.1233 0.0136 1.3416 0.2668 0.2091 0.8900 0.3823 1.3197 1.4936
1.3607 0.6022 0.9031 0.7420 0.5538 1.5407 1.1918 0.5104 1.7564 0.1658
0.4650 0.4523 1.3443 1.5691 1.0239 0.5898 0.8882 0.1892 1.0721 1.6908
1.0479 1.9074 0.3732 1.8763 1.5337 0.2918 1.9343 1.6055 0.0709 0.9326
0.6884 1.6136 1.1970 1.0819 0.3358 0.0234 0.4381 1.2239 1.1829 1.1254
1.4076 0.4704 0.1724 0.5579 0.1318 0.5537 0.2435 0.8490 0.7200 1.5814
0.2753 0.4727 0.5446 1.7038 0.8742 1.2662 1.3187 0.5939 1.2068 0.3514
0.6184 1.6217 1.0503 1.0958 1.9824 0.6737 0.3009 0.7889 1.8378 1.7559
0.6418 1.8355 0.7340 0.7232 0.6433 0.0288 1.3672 0.6466 0.3574 1.0760
[torch.FloatTensor of size 59x10]

param.data.uniform_(-1,1)改变则得到的tensor里面的值随之改变,model.parameter()生成的是基于模型参数的迭代器

在这里记录一个我刚观察到的知识,param.dim()输出tensor的维度信息,维度与torch.FloatTensor of size 5x1x2x2有关,size为5x1x2x2是4维,size为5x1x2是3维以此类推,而Conv2d的这些size是由(Conv2d的前两个参数分别代表input image channel, output channel)输入图像的维度(RGB为3,灰度图像是1),输出的图像的维度(即filter的个数),还有kernel_size决定的。

而输出结果中的维度信息为1的tendor,是卷积得到的结果

4、

def init_hidden(self, batch_size):
weight = next(self.parameters()).data
zeros = Variable(weight.new(self.depth, batch_size, self.n_d).zero_())
if self.args.lstm:
return (zeros, zeros)
else:
return zeros

关于weight = next(self.parameters()).data

看看基于上面那个模型得到的结果

import torch.nn as nn
import torch.nn.functional as F class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 2,2)
self.conv2 = nn.Conv2d(1, 5, 2,1) def forward(self, x):
x = F.relu(self.conv1(x))
return F.relu(self.conv2(x)) model=Model()
print(model)
print(('next'))
x = next(model.parameters()).data
print(x)

结果

Model (
(conv1): Conv2d(1, 6, kernel_size=(2, 2), stride=(2, 2))
(conv2): Conv2d(1, 5, kernel_size=(2, 2), stride=(1, 1))
)
next (0 ,0 ,.,.) =
0.2855 -0.0303
0.1428 -0.4025 (1 ,0 ,.,.) =
-0.0901 0.2736
-0.1527 -0.2854 (2 ,0 ,.,.) =
0.2193 -0.3886
-0.4652 0.2307 (3 ,0 ,.,.) =
0.1918 0.4587
-0.0480 -0.0636 (4 ,0 ,.,.) =
0.4017 -0.4123
0.3016 -0.2714 (5 ,0 ,.,.) =
0.2053 0.1252
-0.2365 -0.3651
[torch.FloatTensor of size 6x1x2x2]

输出的是模型参数中的第0个模型参数的数据。

读sru代码的更多相关文章

  1. [转]用Python做一个自动生成读表代码的小脚本

    写在开始(本片文章不是写给小白的,至少你应该知道一些常识!) 大家在Unity开发中,肯定会把一些数据放到配置文件中,尤其是大一点的项目,每次开发一个新功能的时候,都要重复的写那些读表代码.非常烦.来 ...

  2. 读 Angular 代码风格指南

    读 Angular 代码风格指南 本文写于 2021 年 1 月 17 日 原文地址:Angular 文档 该文章拥有完整的代码风格指南--大到如何编排文件夹,小到如何进行变量命名都涉及.但是与 ng ...

  3. Lua 读表代码,自动生成字段名字

    表格格式为 INT STRING INT INT INT INT INT Id Desc Type SceneId OpenId MaxPliesp ClearancePlies 第1关 - 第2关 ...

  4. 【坚持】Selenium+Python学习之从读懂代码开始 DAY1

    学习Selenium+Python已经好几个月了,但越学发现不懂的东西越多. 感觉最大的问题还是在于基础不扎实,决定从头开始,每天坚持读代码,写代码. 相信量变一定能到质变!!! 2018/05/09 ...

  5. 夺命雷公狗-----React_native---5---初步读懂代码模式

    我们的代码一般导出会用两种方式,如下所示: 这两种方法都是可以的.... 引入方式其实也是很简单的,如下所示: 这样即可...

  6. 机器学习实战-边学边读python代码(4)

    程序2-4 分类器针对约会网站的测试代码(4) def datingClassTest():hoRatio = 0.10 //将文件读入内存矩阵datingDataMat,datingLabels = ...

  7. 【坚持】Selenium+Python学习之从读懂代码开始 DAY7

    2018/05/25 EC [EC](https://github.com/easonhan007/webdriver_guide/blob/master/34/expected_conditions ...

  8. 机器学习实战-边学边读python代码(5)

    def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):    p1 = sum(vec2Classify * p1Vec) + log(pClass1 ...

  9. 机器学习实战-边学边读python代码(3)

    程序清单2-3 归一化特征值: def autoNorm(dataSet): /* >>> barray([[ 1., 2., 3.], [ 2., 3., 4.], [ 10., ...

随机推荐

  1. ZOJ2760_How Many Shortest Path

    给一个图,求从某个点到另一个点的最短路有多少条?所有的路都不共边. 首先从终点开始Spfa标记最短距离,然后建图. 建图的时候,如果满足两点之间的最短路只差为两点之间的边长,那么在网络流的模型中连接一 ...

  2. widows终端远程连接Linux服务器

    一.前言 为什么不是远程连接Linux服务器? 因为我不会,远程连接window我就用电脑自带的“远程桌面连接”. 以下所述都是在CentOS操作系统下的. 服务器刚换成Linux的时候很迷茫,感觉无 ...

  3. BZOJ3243 NOI2013向量内积(随机化)

    考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1 ...

  4. static变量 方法 类 和final

    static变量:声明为static的变量实质上就是全局变量.当声明一个对象时,并不产生static变量的拷贝,而是该类所有的实例变量共用同一个static变量.静态变量与静态方法类似.所有此类实例共 ...

  5. Cure HDU - 5879(预处理+技巧)

    Cure Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. hao123劫持主页

    转自:https://www.zhihu.com/question/39881858 第一步 Firefox.打开Firefox,按Alt+H弹出帮助菜单,点“故障排除信息” 第二步 点“配置文件夹” ...

  7. HYSBZ(BZOJ) 4300 绝世好题(位运算,递推)

    HYSBZ(BZOJ) 4300 绝世好题(位运算,递推) Description 给定一个长度为n的数列ai,求ai的子序列bi的最长长度,满足bi&bi-1!=0(2<=i<= ...

  8. CentOS 6.6下配置本地yum源与网络yum源

    一.本地yum源 1.系统默认已经安装了可使用yum的软件包,所以可以直接配置: [root@localhost ~]# cd /etc/yum.repos.d/                    ...

  9. string 中的一些优化事项

    1.1 fmt  vs  "+" (无转义) import ( "testing" "fmt" ) var ( str = "he ...

  10. git爬坑不完全指北(二):failed to push some refs to ‘XXX’的解决方案

    报错分析        从字面理解,这个报错的意思就是说远程仓库里有一个改动是本地仓库里没有的,所以在push前要先把远程仓库上的改动pull或者fetch到本地仓库.然后再执行push的操作,把本地 ...