POJ 3009:Curling 2.0 推箱子
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 14090 | Accepted: 5887 |
Description
On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game
is to lead the stone from the start to the goal with the minimum number of moves.
Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed
until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.

Fig. 1: Example of board (S: start, G: goal)
The movement of the stone obeys the following rules:
- At the beginning, the stone stands still at the start square.
- The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
- When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
- Once thrown, the stone keeps moving to the same direction until one of the following occurs:
- The stone hits a block (Fig. 2(b), (c)).
- The stone stops at the square next to the block it hit.
- The block disappears.
- The stone gets out of the board.
- The game ends in failure.
- The stone reaches the goal square.
- The stone stops there and the game ends in success.
- The stone hits a block (Fig. 2(b), (c)).
- You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.

Fig. 2: Stone movements
Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.
With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).

Fig. 3: The solution for Fig. D-1 and the final board configuration
Input
The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.
Each dataset is formatted as follows.
the width(=w) and the height(=h) of the board
First row of the board
...
h-th row of the board
The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.
Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.
0 vacant square 1 block 2 start position 3 goal position
The dataset for Fig. D-1 is as follows:
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
Output
For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.
Sample Input
2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0
Sample Output
1
4
-1
4
10
-1
冰球,我更喜欢把它叫推箱子。题意就是它这个箱子能够上下左右四个方向推。碰到边界就跑出去,碰到障碍物停止。之后碰到的障碍物就会在地图上消失。问从S開始经过几步能够达到E。超过10步的话就输出-1。
深搜,自己觉得还是比較简单。毕竟模拟一遍,也不须要弄什么算法。
代码:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
#pragma warning(disable:4996)
using namespace std; #define up 0
#define down 1
#define left 2
#define right 3 int value[25][25];
int row,col,flag,tui_x,tui_y,result,result_zuizhong; bool can_tui(int x_r,int y_r,int dir)
{
if(dir==up||dir==down)
{
int i,j;
if(dir==up)
{
if(value[x_r-1][y_r]==1)
return false;
for(i=1;i<x_r;i++)
{
if(value[i][y_r])
return true;
}
return false;
}
else
{
if(value[x_r+1][y_r]==1)
return false;
for(i=x_r+1;i<=row;i++)
{
if(value[i][y_r])
return true;
}
return false;
}
}
else
{
int i,j;
if(dir==left)
{
if(value[x_r][y_r-1]==1)
return false;
for(i=1;i<y_r;i++)
{
if(value[x_r][i])
return true;
}
return false;
}
else
{
if(value[x_r][y_r+1]==1)
return false;
for(i=y_r+1;i<=col;i++)
{
if(value[x_r][i])
return true;
}
return false;
}
}
} void tui(int x_r,int y_r,int dir)
{
int i,j;
if(dir==up)
{
for(i=x_r-1;i>=1;i--)
{
if(value[i][y_r]==1)
{
tui_x=i+1;
tui_y=y_r;
return;
}
if(value[i][y_r]==3)
{
tui_x=i;
tui_y=y_r;
return;
}
}
}
else if(dir==down)
{
for(i=x_r+1;i<=row;i++)
{
if(value[i][y_r]==1)
{
tui_x=i-1;
tui_y=y_r;
return;
}
if(value[i][y_r]==3)
{
tui_x=i;
tui_y=y_r;
return;
}
}
}
else if(dir==left)
{
for(i=y_r-1;i>=1;i--)
{
if(value[x_r][i]==1)
{
tui_x=x_r;
tui_y=i+1;
return;
}
if(value[x_r][i]==3)
{
tui_x=x_r;
tui_y=i;
return;
}
}
}
else
{
for(i=y_r+1;i<=col;i++)
{
if(value[x_r][i]==1)
{
tui_x=x_r;
tui_y=i-1;
return;
}
if(value[x_r][i]==3)
{
tui_x=x_r;
tui_y=i;
return;
}
}
}
} void dfs(int x_r,int y_r,int step,int dir)
{
if(step>11)
return;
if(value[x_r][y_r]==3)
{
flag=1;
result=min(result,step);
return;
}
if(dir==up)
{
value[x_r-1][y_r]=0;
}
else if(dir==down)
{
value[x_r+1][y_r]=0;
}
else if(dir==left)
{
value[x_r][y_r-1]=0;
}
else if(dir==right)
{
value[x_r][y_r+1]=0;
} if(can_tui(x_r,y_r,up))
{
tui(x_r,y_r,up);
int temp_x=tui_x;
int temp_y=tui_y;
dfs(temp_x,temp_y,step+1,up);
}
if(can_tui(x_r,y_r,left))
{
tui(x_r,y_r,left);
int temp_x=tui_x;
int temp_y=tui_y;
dfs(temp_x,temp_y,step+1,left);
}
if(can_tui(x_r,y_r,down))
{
tui(x_r,y_r,down);
int temp_x=tui_x;
int temp_y=tui_y;
dfs(temp_x,temp_y,step+1,down);
}
if(can_tui(x_r,y_r,right))
{
tui(x_r,y_r,right);
int temp_x=tui_x;
int temp_y=tui_y;
dfs(temp_x,temp_y,step+1,right);
} if(dir==up)
{
value[x_r-1][y_r]=1;
}
else if(dir==down)
{
value[x_r+1][y_r]=1;
}
else if(dir==left)
{
value[x_r][y_r-1]=1;
}
else if(dir==right)
{
value[x_r][y_r+1]=1;
}
} void solve()
{
int i,j;
for(i=row;i>=1;i--)
{
for(j=col;j>=1;j--)
{
if(value[i][j]==2)
{
value[i][j]=0;
result=11;
dfs(i,j,0,-1);
if(flag)
{
result_zuizhong =min(result,result_zuizhong);
}
return;
}
}
}
} int main()
{
int i,j;
while(cin>>col>>row)
{
if(col+row==0)
break;
flag=0;
result_zuizhong=11;
memset(value,0,sizeof(value)); for(i=1;i<=row;i++)
{
for(j=1;j<=col;j++)
{
cin>>value[i][j];
}
}
solve();
if(result_zuizhong==11)
cout<<-1<<endl;
else
cout<<result_zuizhong<<endl; }
return 0;
}
POJ 3009:Curling 2.0 推箱子的更多相关文章
- POJ 3009 Curling 2.0【带回溯DFS】
POJ 3009 题意: 给出一个w*h的地图,其中0代表空地,1代表障碍物,2代表起点,3代表终点,每次行动可以走多个方格,每次只能向附近一格不是障碍物的方向行动,直到碰到障碍物才停下来,此时障碍物 ...
- poj 3009 Curling 2.0 (dfs )
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11879 Accepted: 5028 Desc ...
- poj 3009 Curling 2.0
题目来源:http://poj.org/problem?id=3009 一道深搜题目,与一般搜索不同的是,目标得一直往一个方向走,直到出界或者遇到阻碍才换方向. 1 #include<iostr ...
- POJ 3009 Curling 2.0(DFS + 模拟)
题目链接:http://poj.org/problem?id=3009 题意: 题目很复杂,直接抽象化解释了.给你一个w * h的矩形格子,其中有包含一个数字“2”和一个数字“3”,剩下的格子由“0” ...
- POJ 3009 Curling 2.0 {深度优先搜索}
原题 $On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules ...
- POJ 3009 Curling 2.0 回溯,dfs 难度:0
http://poj.org/problem?id=3009 如果目前起点紧挨着终点,可以直接向终点滚(终点不算障碍) #include <cstdio> #include <cst ...
- poj 3009 Curling 2.0( dfs )
题目:http://poj.org/problem?id=3009 参考博客:http://www.cnblogs.com/LK1994/ #include <iostream> #inc ...
- 【POJ】3009 Curling 2.0 ——DFS
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11432 Accepted: 4831 Desc ...
- 【原创】poj ----- 3009 curling 2 解题报告
题目地址: http://poj.org/problem?id=3009 题目内容: Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Tot ...
随机推荐
- JTAG Communications model
https://en.wikipedia.org/wiki/Joint_Test_Action_Group In JTAG, devices expose one or more test acces ...
- 【Go入门教程3】基本类型 和 高级类型
基本类型 Go 有很多预定义类型,这里简单地把它们分为 基本类型 和 高级类型.Go 的基本类型并不多,而且大部分都与整数相关,如下表所示: 名 称 宽度(字节) 零 值 说 明 bool 1 fal ...
- 交叉编译gdb和gdbserver
从http://ftp.gnu.org/gnu/gdb/下载最新的gdb,我下载的是gdb-8.0. 编译aarch32(>armv5): #!/bin/bash export CC=arm-n ...
- iphone6/6+ 适配心得
1. 文档综述 自iphone6/6+发布,ios屏幕分辨率的种类一下从2种变成了四种.对于以前很多手写UI,并且使用绝对坐标的UI,可能会发生异变,本文主要介绍在纯手写UI条件下,ios应用 ...
- ANDROID DisplayManager 服务解析一
from://http://blog.csdn.net/goohong/article/details/8536102 http://www.tuicool.com/articles/FJVFnu A ...
- IOS Devices Version
游戏项目中有一个专门用于收集IOS崩溃的接口和查询页,运营/测试的同事有时候会通过查询页大概看一下每日崩溃的情况,经常会问iPhone6,1是什么,iPhone7,1又是什么设备? 我从网上仔细搜 ...
- ClipDrawable属性介绍
ClipDrawable代表从其它位图上截取一个"图片片段",XML中的根元素为<clip.../>,截取的方向由clipOrientation控制 <?xml ...
- 部署包含水晶报表Crystal Reports 的VS.NET2005应用程序[原创]
要部署包含水晶报表Crystal Reports 的应用程序,您需要在生成解决方案之前创建一个安装项目,并且向应用程序中添加必要的合并模块. 1.打开 VS.NET2005 编程IDE. 2.在解决方 ...
- Maven 快速入门
安装 Maven是一个Java工具,因此你的电脑上必须安装有JAVA环境(JDK或者JRE) 首先,从官方下载 Maven ,我这里下载的是 3.5 的版本. 本文是在Mac环境中安装的,首先创建一个 ...
- Java中线程池,你真的会用吗?
在<深入源码分析Java线程池的实现原理>这篇文章中,我们介绍过了Java中线程池的常见用法以及基本原理. 在文中有这样一段描述: 可以通过Executors静态工厂构建线程池,但一般不建 ...