bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$
肯定要先拆开,不然怎么做呢(大雾)
把$C(n,i)$用$lucas$分解一下
于是原式$=\sum_{i=1}^{k}C(n/P,k/P)*C(n\%P,k\%P)\%P$
发现介个$k/P$是可以用整除分块搞的
于是拆开各个分块
$=C(n/P,0)*\sum_{i=0}^{P-1}C(n\%P,i)$
$+C(n/P,1)*\sum_{i=0}^{P-1}C(n\%P,i)$
$+...$
$+C(n/P,k/P-1)*\sum_{i=0}^{P-1}C(n\%P,i)$
$+C(n/P,k/P)*\sum_{i=0}^{k\%P}C(n\%P,i)$(最后一块不一定是整块,单独取出)
发现前面都有个$\sum_{i=0}^{P-1}C(n\%P,i)$,把它提出来
$=\sum_{j=0}^{k/P-1}C(n/P,j)*\sum_{i=0}^{P-1}C(n\%P,i)+C(n/P,k/P)*\sum_{i=0}^{k\%P}C(n\%P,i)$
根据$f$数组的定义再套进去
$=f[n/P][k/P-1]*f[n\%P][P-1]+C(n/P,k/P)*f[k\%P][n\%P]$
先预处理下标$<P$的$f$数组和组合数$C$,再递归一下,$C(n/P,k/P)$用$Lucas$定理搞
end.
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int P=;
int t;ll n,k,c[P+][P+],f[P+][P+];
ll lucas(ll a,ll b){
if(a<b) return ;
if(a==b) return ;
return b?lucas(a/P,b/P)*c[a%P][b%P]%P:;
}
ll F(ll a,ll b){
if(b<) return ;
if(!a||!b) return ;
if(a<P&&b<P) return f[a][b];
ll r1=f[a%P][P-]*F(a/P,b/P-)%P;
ll r2=lucas(a/P,b/P)*f[a%P][b%P]%P;
return (r1+r2)%P;
}
int main(){
for(int i=;i<=P;++i){
c[i][]=c[i][i]=;
for(int j=;j<i;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%P;
}
for(int i=;i<=P;++i){
f[i][]=;
for(int j=;j<=P;++j)//注意f[P][P]以内的都要处理到
f[i][j]=(f[i][j-]+c[i][j])%P;
}
scanf("%d",&t);
while(t--){
scanf("%lld%lld",&n,&k);
printf("%lld\n",F(n,k));
}return ;
}
bzoj4591 / P4345 [SHOI2015]超能粒子炮·改的更多相关文章
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告
P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解
好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...
- P4345 [SHOI2015]超能粒子炮·改 Lucas
\(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...
- [洛谷P4345][SHOI2015]超能粒子炮·改
题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0} ...
- P4345 [SHOI2015]超能粒子炮·改
传送门 看到数据和模数大小就知道要上 lucas 了 然后开始愉快地推公式: 答案为 $\sum _{i=0}^kC_{n}^{i}\ (mod\ 2333)$ 设 $f [ i ] [ j ] = ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改
设S(n,k)=Σ C(n,i) i=0..k 根据lucas定理可以得到 S(n,k) mod p = [ S(n/p,k/p-1)*S(n mod p,p-1)+C(n/p,k/p)*S(n mo ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
随机推荐
- 模拟线程安全的售票案例(java)
package try51.thread.safe; import java.util.ArrayList; import java.util.Random; import java.util.con ...
- codeforces#518 Div2 ABCDE
A---Birthday http://codeforces.com/contest/1068/problem/A 题意: 有n种硬币,m个人.m个人要给Ivan送硬币,每个人送的硬币都要互不相同但数 ...
- HDU 4514 - 湫湫系列故事——设计风景线 - [并查集判无向图环][树形DP求树的直径]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 Time Limit: 6000/3000 MS (Java/Others) Memory Li ...
- C++中引用与取地址
所谓引用就是为对象起一个别名.例如变量b = &a,b就是a的一个引用.对b的任何操作等同于对a的操作,也就是说,如果你改变了b的值,同时a的值也会发生改变.b就是a的另外一个名字,他们实质是 ...
- NTLM
我们介绍Kerberos认证的整个流程.在允许的环境下,Kerberos是首选的认证方式.在这之前,Windows主要采用另一种认证协议——NTLM(NT Lan Manager).NTLM使用在Wi ...
- CentOS代理设置
1.全局的代理设置: vi /etc/profile 添加下面内容 http_proxy = http://username:password@yourproxy:8080/ftp_proxy = h ...
- 关于HttpServletRequest报红叉的解决办法
今天导入项目的时候,发现报错了,如题.然后找到了解决办法 解决方法:鼠标右击项目工程——>Build Path——>点击comfigure Build Path进入----->选择j ...
- BUG笔记:Win8 IE10下input[type="password"]内字符显示被截取问题
这个BUG发生的截图: 这是发生在Windows8 IE10下,type为password的input文本框内输入长串字符后,初次失去焦点的时候会发生的一个BUG. 发生BUG的原因是这个文本框上应用 ...
- Html中常用的属性
!important //增加权重 word-break:break-all //允许在单词内换行 keep-all //只在半角空格或连接字符串换行 --这个属性一般用于文章段落 ...
- centos7 设置 静态IP
centos7 图形设置 yum install NetworkManager-tui #centos7 nmtui edit eth0 #图形设置ip systemctl restart netwo ...