有向图中,连通性比较好理解,如果两个顶点V和顶点W是可达的,可以称之为强连通的,即存在路径A→B,同时也存在一条有向路径B→A.从之前的有向环的判定过程中其实我们可以得到一个结论就是两个是强连通的当且仅当它们都在一个普通的有向环中。强连通将所有的顶点分为了不同的集合,每个集合都是由相互均为强连通性的顶点的最大子集组成的,我们将这些集合称之为强连通分量。

基础概念

一般来说技术服务于生活,如果将我们看到网页作为顶点,页面指向另外一个页面的超链接作为边,可以将数量庞大的网页分为不同的大小进行处理,作为软件工程师或者说码农,经常遇到的就是模块的封装,如果将模块作为顶点,模块之间的引用作为边,通过强连通图我们可以更好进行模块之间的调用关系考虑适时的解耦。如果通过平方级别的算法解决强连通分量,那么遇到大型有向图的过程我们就会有点力不从心。Kosaraju的算法(也称为Kosaraju-Sharir算法)是线性时间的算法来解决有向图中的连通性查询以及处理强连通分量的数量。

采用之前有向环中的图片:

API定义:

@interface KosarajuCC : NSObject

//记录顶点是否被标记
@property (strong,nonatomic) NSMutableArray *marked; @property (assign,nonatomic) NSInteger count;//连通的分量 @property (strong,nonatomic) NSMutableArray *ids;//顶点所在的连通分量的标识符 //连通分量递归初始化
-(instancetype)initWithGraph:(Digraph *)graph; -(void)depthSearch:(Digraph *)graph vertex:(NSInteger)vertex;
//判断两个顶点之间是否存在连通性
-(BOOL)stronglyConnected:(NSInteger)vertex otherVertex:(NSInteger)otherVertex; @end

算法实战

通过API的定义,如果对比之前之前无向图中的API,我们发现基本上没有变化,具体实现的过程中变化也很小,需要之前基于深度优先搜索的顶点排序,取出逆后序集合进行遍历即可,之后和无向图中一样进行递归判断存储在数组中。

@implementation KosarajuCC

#pragma mark  getter and setter
-(NSMutableArray *)marked{
if (!_marked) {
_marked=[[NSMutableArray alloc]initWithCapacity:1];
}
return _marked;
} -(NSMutableArray *)ids{
if (!_ids) {
_ids=[[NSMutableArray alloc]initWithCapacity:1];
}
return _ids;
} -(instancetype)initWithGraph:(Digraph *)graph{
self=[super init];
if (self) {
for (NSInteger i=0; i<graph.vertexs;i++) {
[self.marked addObject:[NSNull null]];
[self.ids addObject:[NSNull null]];
}
DepthFirstOrder *order=[[DepthFirstOrder alloc]initWithGraph:[graph reverse]];
//遍历图的顶点
for (NSInteger j=0; j<[order.reversePostStack count]; j++) {
NSInteger temp=[[order.reversePostStack objectAtIndex:j] integerValue];
if (![self isMarked:temp]) {
[self depthSearch:graph vertex:temp];
self.count++;
}
}
}
return self;
}
//博客园-FlyElephant:http://www.cnblogs.com/xiaofeixiang/
-(void)depthSearch:(Digraph *)graph vertex:(NSInteger)vertex{
self.marked[vertex]=[NSNumber numberWithBool:true];
//同一分量中顶点的赋值
self.ids[vertex]=[NSNumber numberWithInteger:self.count];
for (NSInteger i=0; i<[graph.adjDataSource[vertex] count]; i++) {
NSInteger temp=[[graph.adjDataSource[vertex] objectAtIndex:i] integerValue];
if (![self isMarked:temp]) {
[self depthSearch:graph vertex:temp];
}
}
} -(Boolean)isMarked:(NSInteger)vertex{
return self.marked[vertex]==[NSNull null]?false:[self.marked[vertex] boolValue];
} -(BOOL)stronglyConnected:(NSInteger)vertex otherVertex:(NSInteger)otherVertex{
return [self.ids[vertex] integerValue]==[self.ids[otherVertex] integerValue];
}
@end

测试代码:

        Digraph  *graph=[[Digraph alloc]initWithVertex:13];
[graph addEdges:4 endVertex:2];
[graph addEdges:2 endVertex:3];
[graph addEdges:3 endVertex:2];
[graph addEdges:6 endVertex:0];
[graph addEdges:0 endVertex:1];
[graph addEdges:2 endVertex:0];
[graph addEdges:11 endVertex:12];
[graph addEdges:12 endVertex:9];
[graph addEdges:9 endVertex:10];
[graph addEdges:9 endVertex:11];
[graph addEdges:8 endVertex:9];
[graph addEdges:10 endVertex:12];
[graph addEdges:11 endVertex:4];
[graph addEdges:4 endVertex:3];
[graph addEdges:3 endVertex:5];
[graph addEdges:7 endVertex:8];
[graph addEdges:8 endVertex:7];
[graph addEdges:5 endVertex:4];
[graph addEdges:0 endVertex:5];
[graph addEdges:6 endVertex:4];
[graph addEdges:6 endVertex:9];
[graph addEdges:7 endVertex:6];
KosarajuCC *graphCC=[[KosarajuCC alloc]initWithGraph:graph];
for (NSInteger i=0; i<graphCC.count; i++) {
NSMutableArray *dataSource=[[NSMutableArray alloc]initWithCapacity:1];
for (NSInteger j=0; j<graph.vertexs; j++) {
if ([graphCC.ids[j] integerValue]==i) {
[dataSource addObject:[NSNumber numberWithInteger:j]];
}
}
NSLog(@"分量%ld:%@",i,[dataSource componentsJoinedByString:@"--"]);
}
NSInteger vertex=0,otherVertex=1;
Boolean cc=[graphCC stronglyConnected:vertex otherVertex:otherVertex];
NSLog(@"节点%ld和节点%ld %@强连通的",vertex,otherVertex,cc==true?@"是":@"不是");
NSLog(@"技术交流群:%@",@"228407086");
NSLog(@"博客园-FlyElephant:http://www.cnblogs.com/xiaofeixiang");

测试结果:

算法-强连通分量和Kosaraju算法的更多相关文章

  1. 图论-求有向图的强连通分量(Kosaraju算法)

    求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...

  2. 强连通分量分解 Kosaraju算法 (poj 2186 Popular Cows)

    poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求 ...

  3. Kosaraju算法、Tarjan算法分析及证明--强连通分量的线性算法

    一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和 ...

  4. 【强连通分量】tarjan算法及kosaraju算法+例题

    阅读前请确保自己知道强连通分量是什么,本文不做赘述. Tarjan算法 一.算法简介 Tarjan算法是一种由Robert Tarjan提出的求有向图强连通分量的时间复杂度为O(n)的算法. 首先我们 ...

  5. 有向图强连通分量的Tarjan算法

    有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...

  6. 【转】有向图强连通分量的Tarjan算法

    原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...

  7. 【转载】有向图强连通分量的Tarjan算法

    转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...

  8. 有向图强连通分量的Tarjan算法(转)

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  9. 强连通分量的Tarjan算法

    资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...

随机推荐

  1. BeagleBone Black教程之BeagleBone Black设备的连接

    BeagleBone Black教程之BeagleBone Black设备的连接 BeagleBone Black开发前需要准备的材料 经过上面的介绍,相信你已经对BeagleBone有了大致的了解, ...

  2. ZOJ 2975 Kinds of Fuwas

    K - Kinds of Fuwas Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu De ...

  3. [原创]用Charles模拟App各种网络带宽测试介绍

    [原创]用Charles模拟App各种网络带宽测试介绍 相信每个测试在进行自己公司App测试时,都会碰到一个问题,如何去模拟各种App在各种带宽下的测试情况,估计很少有公司直接去采用2g/3g/4g卡 ...

  4. PHP上传文件大小限制的问题(转)

      在用PHP进行文件上传的操作中,需要知道怎么控制上传文件大小的设置,而文件可传大小是受到多种因素制约的,现总结如下:1.php.ini:upload_max_filesize 所上传的文件的最大大 ...

  5. HDU 4737 A Bit Fun (2013成都网络赛)

    A Bit Fun Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  6. HOWTO: Use STM32 SPI half duplex mode

    HOWTO: Use STM32 SPI half duplex mode I’ve got my hands onto some STM32F030F4P6 ARM-Cortex M0 proces ...

  7. Revit API修改保温层厚度

    start [Transaction(TransactionMode.Manual)] [Regeneration(RegenerationOption.Manual)] ;, newLayer); ...

  8. Exynos4412的外部中断是如何安排的?

    作者 彭东林 pengdonglin137@163.com   平台 Linux4.9 tiny4412   概述 结合tiny4412开发板分析一下Exynos4412的外部中断是如何组织的.   ...

  9. Javascript 中的arguments

    arguments是当前正在执行的function的一个参数,它保存了函数当前调用的参数.   使用方法:function.arguments[i]. 其中function.是可选项,是当前正在执行的 ...

  10. C#编程(五十一)----------链表

    原文链接: http://blog.csdn.net/shanyongxu/article/details/47024865 链表 LinkedList<T>集合类没有非泛型类的版本,它是 ...