LG5901 【模板】欧拉定理
题意
题目描述
给你三个正整数,$a,m,b$,你需要求:
$a^b \mod m$
输入输出格式
输入格式:
一行三个整数,$a,m,b$
输出格式:
一个整数表示答案
输入输出样例
说明
注意输入格式,$a,m,b$ 依次代表的是底数、模数和次数
样例1解释:
$2^4 \mod 7 = 2$
输出2
数据范围:
对于全部数据:
$1≤a≤10^9$
$1≤b≤10^{20000000}$
$1≤m≤10^6$
分析
费马小定理
当 \(a,p\in \mathbb{Z}\) 且 \(p\) 为质数,且 \(a\not\equiv 0\pmod{p}\) 时有:
\(a^{p-1}\equiv 1\pmod{p}\) 。
所以 \(a^b\equiv a^{b\bmod (p-1)}\pmod p\) 。
欧拉定理
当 \(a,m\in \mathbb{Z}\) ,且 \(\gcd(a,m)=1\) 时有:
\(a^{\varphi(m)}\equiv 1\pmod{m}\) 。
这里 \(\varphi(x)\) 是数论中的欧拉函数。
所以 \(a^b\equiv a^{b\bmod \varphi(m)}\pmod m\) 。
扩展欧拉定理
当 \(a,m\in \mathbb{Z}\) 时有:
\(a^b\equiv\left\{\begin{matrix}a^b&,b<\varphi(m)\\a^{b\bmod\varphi(m)+\varphi(m)}&,b\ge\varphi(m)\end{matrix}\right.\pmod m\) 。
对于那个高精度整数,一边乘10相加,一遍取模即可。时间复杂度\(O(\sqrt m+\lg b+\log_2 m)\)
代码
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
int main(){
int a=read<int>(),m=read<int>();
int phi=m,mm=m;
for(int i=2;i*i<=mm;++i)if(mm%i==0){
phi=phi/i*(i-1);
while(mm%i==0) mm/=i;
}
if(mm>1) phi=phi/mm*(mm-1);
int b=0,flag=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)){
b=b*10+ch-'0',ch=getchar();
if(b>=phi) b%=phi,flag=1;
}
if(b>=phi) b%=phi,flag=1;
if(flag) b+=phi;
int ans=1;
for(;b;b>>=1,a=(ll)a*a%m)
if(b&1) ans=(ll)ans*a%m;
printf("%d\n",ans);
return 0;
}
LG5901 【模板】欧拉定理的更多相关文章
- P5091 【模板】欧拉定理(欧拉降幂)
P5091 [模板]欧拉定理 以上3张图是从这篇 博客 里盗的,讲的比较清楚. #include<bits/stdc++.h> using namespace std; typedef l ...
- P5091 【模板】欧拉定理
思路 欧拉定理 当a与m互质时 \[ a^ {\phi (m)} \equiv 1 \ \ (mod\ m) \] 扩展欧拉定理 当a与m不互质且\(b\ge \phi(m)\)时, \[ a^b \ ...
- 题解 P5091 【【模板】欧拉定理】
欧拉定理:若 \(gcd(a,n)=1\),\(a^{\varphi(n)}\equiv 1(mod\ n)\) 设 \(1\sim n-1\) 中与 \(n\) 互素的 \(\varphi(n)\) ...
- [洛谷P5091]【模板】欧拉定理
题目大意:求$a^b\bmod m(a\leqslant10^9,m\leqslant10^6,b\leqslant10^{2\times10^7})$ 题解:扩展欧拉定理:$$a^b\equiv\b ...
- 【luoguP5091】【模板】欧拉定理
题目链接 欧拉定理: 当\(a\),\(m\)互质时,\(a^{\phi(m)}\equiv 1 (mod ~ m)\) 扩展欧拉定理: 当\(B>\phi(m)\)时,\(a^B\equiv ...
- 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)
题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...
- P5091 【模板】扩展欧拉定理
题目链接 昨天考试考到了欧拉公式,结果发现自己不会,就来恶补一下. 欧拉公式 \(a^b \bmod p = a^{b}\) \(b < \varphi(p)\) \(a^b \bmod p = ...
- uestc_retarded 模板
虽然这个队,以后再也没有了,但是他的模板,是永垂不朽的![误 #include <ext/pb_ds/priority_queue.hpp> __gnu_pbds::priority_qu ...
- Description has only two Sentences(欧拉定理 +快速幂+分解质因数)
Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
随机推荐
- [Codeforces513E2]Subarray Cuts
Problem 给定一个长度为n的数字串,从中选取k个不重叠的子串(可以少选),将每个串求和si 求max|s1 - s2| + |s2 - s3| + ... + |sk - 1 - sk|(n & ...
- maven配置checkstyle插件对代码规范进行静态检查
checkstyle配置的官方网站:http://checkstyle.sourceforge.net/config.html (1)新建maven项目,配置checkstyle插件 pom.xml ...
- docker pure-ftpd
FROM alpine:3.7ADD http://dl-4.alpinelinux.org/alpine/edge/testing/x86_64/pure-ftpd-1.0.47-r0.apk /r ...
- 重写equals() 和 hashCode()方法
什么情况下需要重写呢? 比如去重操作时, 有时候往Set集合存放对象User,我们User类的字段太多时,比如有50个字段, 判断两个User对象相同,不需要判断它们所有字段都相同,只需要判断它们的某 ...
- Linux学习 :移植linux-3.4.83到JZ2440开发板
一.编译环境搭建: 1.linux源码下载:https://www.kernel.org/ (最新) https://mirrors.edge.kernel.org/pub/linux/kernel ...
- MFC Release版本串口连不上的问题
项目开发过程中发现Release版本存在连接串口时,第一次开机后,出现连接不上的问题,但在Debug版本下正常:而且只要连接上一次,Release版本就能正常连接: 解决方案: 在串口配置过程中更改为 ...
- winserver 搭建 Citrix License 许可服务器
1. 申请许可证 Citrix XenApp_XenDesktop7.6和XenServer 6.5申请许可证的步骤是一致的,由于之前我已经申请过XenApp_XenDesktop的许可证,本次以X ...
- CentOS7安装配置Bacula yum方法
参考: https://www.baidu.com/link?url=o2QIy2YZWjsJPAFJuYFhrH3nPvtyRkSe-o5Q_FqFZ5E1EMOsIOmGeKm0HAonwHOw8 ...
- JavaWeb基础-Jsp基础语法
jsp基础语法 JSP的组成 静态内容.指令.表达式.小脚本.声明.注释 JSP的生命周期 用户发出index.jsp ,服务端判断是否是第一次请求,若是第一次请求,则tomcat中的JSP引擎中的文 ...
- [AOP] 之让人一脸蒙哔的面向切面编程
最近接触到了面向切面编程,看来很多的文档,算是有一点点了解了,趁自己还有点印象,先把它们给写出来 什么是AOP AOP(Aspect-Oriented Programming), 即 面向切面编程. ...