LG5901 【模板】欧拉定理
题意
题目描述
给你三个正整数,$a,m,b$,你需要求:
$a^b \mod m$
输入输出格式
输入格式:
一行三个整数,$a,m,b$
输出格式:
一个整数表示答案
输入输出样例
说明
注意输入格式,$a,m,b$ 依次代表的是底数、模数和次数
样例1解释:
$2^4 \mod 7 = 2$
输出2
数据范围:
对于全部数据:
$1≤a≤10^9$
$1≤b≤10^{20000000}$
$1≤m≤10^6$
分析
费马小定理
当 \(a,p\in \mathbb{Z}\) 且 \(p\) 为质数,且 \(a\not\equiv 0\pmod{p}\) 时有:
\(a^{p-1}\equiv 1\pmod{p}\) 。
所以 \(a^b\equiv a^{b\bmod (p-1)}\pmod p\) 。
欧拉定理
当 \(a,m\in \mathbb{Z}\) ,且 \(\gcd(a,m)=1\) 时有:
\(a^{\varphi(m)}\equiv 1\pmod{m}\) 。
这里 \(\varphi(x)\) 是数论中的欧拉函数。
所以 \(a^b\equiv a^{b\bmod \varphi(m)}\pmod m\) 。
扩展欧拉定理
当 \(a,m\in \mathbb{Z}\) 时有:
\(a^b\equiv\left\{\begin{matrix}a^b&,b<\varphi(m)\\a^{b\bmod\varphi(m)+\varphi(m)}&,b\ge\varphi(m)\end{matrix}\right.\pmod m\) 。
对于那个高精度整数,一边乘10相加,一遍取模即可。时间复杂度\(O(\sqrt m+\lg b+\log_2 m)\)
代码
#include<bits/stdc++.h>
#define rg register
#define il inline
#define co const
template<class T>il T read(){
rg T data=0,w=1;rg char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') w=-1;ch=getchar();}
while(isdigit(ch)) data=data*10+ch-'0',ch=getchar();
return data*w;
}
template<class T>il T read(rg T&x) {return x=read<T>();}
typedef long long ll;
int main(){
int a=read<int>(),m=read<int>();
int phi=m,mm=m;
for(int i=2;i*i<=mm;++i)if(mm%i==0){
phi=phi/i*(i-1);
while(mm%i==0) mm/=i;
}
if(mm>1) phi=phi/mm*(mm-1);
int b=0,flag=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)){
b=b*10+ch-'0',ch=getchar();
if(b>=phi) b%=phi,flag=1;
}
if(b>=phi) b%=phi,flag=1;
if(flag) b+=phi;
int ans=1;
for(;b;b>>=1,a=(ll)a*a%m)
if(b&1) ans=(ll)ans*a%m;
printf("%d\n",ans);
return 0;
}
LG5901 【模板】欧拉定理的更多相关文章
- P5091 【模板】欧拉定理(欧拉降幂)
P5091 [模板]欧拉定理 以上3张图是从这篇 博客 里盗的,讲的比较清楚. #include<bits/stdc++.h> using namespace std; typedef l ...
- P5091 【模板】欧拉定理
思路 欧拉定理 当a与m互质时 \[ a^ {\phi (m)} \equiv 1 \ \ (mod\ m) \] 扩展欧拉定理 当a与m不互质且\(b\ge \phi(m)\)时, \[ a^b \ ...
- 题解 P5091 【【模板】欧拉定理】
欧拉定理:若 \(gcd(a,n)=1\),\(a^{\varphi(n)}\equiv 1(mod\ n)\) 设 \(1\sim n-1\) 中与 \(n\) 互素的 \(\varphi(n)\) ...
- [洛谷P5091]【模板】欧拉定理
题目大意:求$a^b\bmod m(a\leqslant10^9,m\leqslant10^6,b\leqslant10^{2\times10^7})$ 题解:扩展欧拉定理:$$a^b\equiv\b ...
- 【luoguP5091】【模板】欧拉定理
题目链接 欧拉定理: 当\(a\),\(m\)互质时,\(a^{\phi(m)}\equiv 1 (mod ~ m)\) 扩展欧拉定理: 当\(B>\phi(m)\)时,\(a^B\equiv ...
- 洛谷 P3811 【模板】乘法逆元(欧拉定理&&线性求逆元)
题目传送门 逆元定义 逆元和我们平时所说的倒数是有一定的区别的,我们平时所说的倒数是指:a*(1/a) = 1,那么逆元和倒数之间的区别就是:假设x是a的逆元,那么 a * x = 1(mod p), ...
- P5091 【模板】扩展欧拉定理
题目链接 昨天考试考到了欧拉公式,结果发现自己不会,就来恶补一下. 欧拉公式 \(a^b \bmod p = a^{b}\) \(b < \varphi(p)\) \(a^b \bmod p = ...
- uestc_retarded 模板
虽然这个队,以后再也没有了,但是他的模板,是永垂不朽的![误 #include <ext/pb_ds/priority_queue.hpp> __gnu_pbds::priority_qu ...
- Description has only two Sentences(欧拉定理 +快速幂+分解质因数)
Description has only two Sentences Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 ...
随机推荐
- Java 算法(背包,队列和栈)
Dijkstra的双栈算术表达式求值算法: import java.util.*; public class Main { public static double evaluate(String a ...
- js 设置img标签的src资源无法找到的替代图片(通过img的属性设置)
在网站的前端页面设计中,要考虑到img图片资源的存在性,如果img的src图片资源不存在或显示不出来,则需要显示默认的图片.如何做到呢? 一.监听document的error事件 document.a ...
- sea.js与require.js的区别
随着ES6标准的module出台渐渐会退出历史舞台 首先原理上的区别 sea.js遵循CMD规范.书写方式类似node.js的书写模板代码.依赖的自动加载,配置的简洁清晰.说白了就是懒加载. requ ...
- x多进程
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' from multiprocessing import Process import os #子进 ...
- org.apache.httpcomponents httpclient 发起HTTP JSON请求
1. pom.xml <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactI ...
- 使用 DirectX 创建 3D 图形
官方链接 https://msdn.microsoft.com/zh-cn/library/windows/desktop/hh465137.aspx 使用 Windows 运行时初始化 Dire ...
- Vue 项目架构设计与工程化实践
来源 文中会讲述我从0~1搭建一个前后端分离的vue项目详细过程 Feature: 一套很实用的架构设计 通过 cli 工具生成新项目 通过 cli 工具初始化配置文件 编译源码与自动上传CDN Mo ...
- git使用简明教程
1.自己在gitlab.XXX.com创建一个项目 点击右上角的"+"符号,创建新项目. 项目名:xxxtest 2.在master分支提交一个文件Readme.txt 文件内容: ...
- ie 折腾计(浏览器兼容性)
常见问题 IE:6.0,IE7.0,IE8.0之间的兼容独立说明 /*用于展示标签*/ <div class="jrx"></div> <style ...
- golang使用ssl自签证书通信
证书是自签名生成的,另外lets encrypt证书免费发放,而且众多大厂都已经开始支持了,不过这只是个例子,无所谓验证有效和权威性了 服务器端 package main import ( " ...