参考:Fitting a Model by Maximum Likelihood

最大似然估计是用于估计模型参数的,首先我们必须选定一个模型,然后比对有给定的数据集,然后构建一个联合概率函数,因为给定了数据集,所以该函数就是以模型参数为自变量的函数,通过求导我们就能得到使得该函数值(似然值)最大的模型参数了。

Maximum-Likelihood Estimation (MLE) is a statistical technique for estimating model parameters. It basically sets out to answer the question: what model parameters are most likely to characterise a given set of data? First you need to select a model for the data. And the model must have one or more (unknown) parameters. As the name implies, MLE proceeds to maximise a likelihood function, which in turn maximises the agreement between the model and the data.

Most illustrative examples of MLE aim to derive the parameters for a probability density function (PDF) of a particular distribution. In this case the likelihood function is obtained by considering the PDF not as a function of the sample variable, but as a function of distribution’s parameters. For each data point one then has a function of the distribution’s parameters. The joint likelihood of the full data set is the product of these functions. This product is generally very small indeed, so the likelihood function is  normally replaced by a log-likelihood function. Maximising either the likelihood or log-likelihood function yields the same results, but the latter is just a little more tractable!

Fitting a Normal Distribution

Let’s illustrate with a simple example: fitting a normal distribution. First we generate some data.

> set.seed(1001)
>
> N <- 100
>
> x <- rnorm(N, mean = 3, sd = 2)
>
> mean(x)
[1] 2.998305
> sd(x)
[1] 2.288979

Then we formulate the log-likelihood function.

> LL <- function(mu, sigma) {
+     R = dnorm(x, mu, sigma)
+     #
+     -sum(log(R))
+ }

And apply MLE to estimate the two parameters (mean and standard deviation) for which the normal distribution best describes the data.

> library(stats4)
>
> mle(LL, start = list(mu = 1, sigma=1))
 
Call:
mle(minuslogl = LL, start = list(mu = 1, sigma = 1))
 
Coefficients:
      mu    sigma
2.998305 2.277506
Warning messages:
1: In dnorm(x, mu, sigma) : NaNs produced
2: In dnorm(x, mu, sigma) : NaNs produced
3: In dnorm(x, mu, sigma) : NaNs produced

Those warnings are a little disconcerting! They are produced when negative values are attempted for the standard deviation.

> dnorm(x, 1, -1)
  [1] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
 [30] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
 [59] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
 [88] NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

There are two ways to sort this out. The first is to apply constraints on the parameters. The mean does not require a constraint but we insist that the standard deviation is positive.

> mle(LL, start = list(mu = 1, sigma=1), method = "L-BFGS-B", lower = c(-Inf, 0),
      upper = c(Inf, Inf))
 
Call:
mle(minuslogl = LL, start = list(mu = 1, sigma = 1), method = "L-BFGS-B",
    lower = c(-Inf, 0), upper = c(Inf, Inf))
 
Coefficients:
      mu    sigma
2.998304 2.277506

This works because mle() calls optim(), which has a number of optimisation methods. The default method is BFGS. An alternative, the L-BFGS-B method, allows box constraints.

The other solution is to simply ignore the warnings. It’s neater and produces the same results.

> LL <- function(mu, sigma) {
+     R = suppressWarnings(dnorm(x, mu, sigma))
+     #
+     -sum(log(R))
+ }
>
> mle(LL, start = list(mu = 1, sigma=1))
 
Call:
mle(minuslogl = LL, start = list(mu = 1, sigma = 1))
 
Coefficients:
      mu    sigma
2.998305 2.277506

The maximum-likelihood values for the mean and standard deviation are damn close to the corresponding sample statistics for the data. Of course, they do not agree perfectly with the values used when we generated the data: the results can only be as good as the data. If there were more samples then the results would be closer to these ideal values.

A note of caution: if your initial guess for the parameters is too far off then things can go seriously wrong!

> mle(LL, start = list(mu = 0, sigma=1))
 
Call:
mle(minuslogl = LL, start = list(mu = 0, sigma = 1))
 
Coefficients:
      mu    sigma
 51.4840 226.8299

Fitting a Linear Model

Now let’s try something a little more sophisticated: fitting a linear model. As before, we generate some data.

> x <- runif(N)
> y <- 5 * x + 3 + rnorm(N)

We can immediately fit this model using least squares regression.

> fit <- lm(y ~ x)
>
> summary(fit)
 
Call:
lm(formula = y ~ x)
 
Residuals:
     Min       1Q   Median       3Q      Max
-1.96206 -0.59016 -0.00166  0.51813  2.43778
 
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   3.1080     0.1695   18.34   <2e-16 ***
x             4.9516     0.2962   16.72   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
Residual standard error: 0.8871 on 98 degrees of freedom
Multiple R-squared:  0.7404,    Adjusted R-squared:  0.7378
F-statistic: 279.5 on 1 and 98 DF,  p-value: < 2.2e-16

The values for the slope and intercept are very satisfactory. No arguments there. We can superimpose the fitted line onto a scatter plot.

> plot(x, y)
> abline(fit, col = "red")

Pushing on to the MLE for the linear model parameters. First we need a likelihood function. The model is not a PDF, so we can’t proceed in precisely the same way that we did with the normal distribution. However, if you fit a linear model then you want the residuals to be normally distributed. So the likelihood function fits a normal distribution to the residuals.

LL <- function(beta0, beta1, mu, sigma) {
    # Find residuals
    #
    R = y - x * beta1 - beta0
    #
    # Calculate the likelihood for the residuals (with mu and sigma as parameters)
    #
    R = suppressWarnings(dnorm(R, mu, sigma))
    #
    # Sum the log likelihoods for all of the data points
    #
    -sum(log(R))
}

One small refinement that one might make is to move the logarithm into the call to dnorm().

LL <- function(beta0, beta1, mu, sigma) {
    R = y - x * beta1 - beta0
    #
    R = suppressWarnings(dnorm(R, mu, sigma, log = TRUE))
    #
    -sum(R)
}

It turns out that the initial guess is again rather important and a poor choice can result in errors. We will return to this issue a little later.

> fit <- mle(LL, start = list(beta0 = 3, beta1 = 1, mu = 0, sigma=1))
Error in solve.default(oout$hessian) :
  system is computationally singular: reciprocal condition number = 3.01825e-22
> fit <- mle(LL, start = list(beta0 = 5, beta1 = 3, mu = 0, sigma=1))
Error in solve.default(oout$hessian) :
  Lapack routine dgesv: system is exactly singular: U[4,4] = 0

But if we choose values that are reasonably close then we get a decent outcome.

> fit <- mle(LL, start = list(beta0 = 4, beta1 = 2, mu = 0, sigma=1))
> fit
 
Call:
mle(minuslogl = LL, start = list(beta0 = 4, beta1 = 2, mu = 0,
    sigma = 1))
 
Coefficients:
     beta0      beta1         mu      sigma
 3.5540217  4.9516133 -0.4459783  0.8782272

The maximum-likelihood estimates for the slope (beta1) and intercept (beta0) are not too bad. But there is a troubling warning about NANs being produced in the summary output below.

> summary(fit)
Maximum likelihood estimation
 
Call:
mle(minuslogl = LL, start = list(beta0 = 4, beta1 = 2, mu = 0,
    sigma = 1))
 
Coefficients:
        Estimate Std. Error
beta0  3.5540217        NaN
beta1  4.9516133  0.2931924
mu    -0.4459783        NaN
sigma  0.8782272  0.0620997
 
-2 log L: 257.8177
Warning message:
In sqrt(diag(object@vcov)) : NaNs produced

It stands to reason that we actually want to have the zero mean for the residuals. We can apply this constraint by specifying mu as a fixed parameter. Another option would be to simply replace mu with 0 in the call to dnorm(), but the alternative is just a little more flexible.

> fit <- mle(LL, start = list(beta0 = 2, beta1 = 1.5, sigma=1), fixed = list(mu = 0),
             nobs = length(y))
> summary(fit)
Maximum likelihood estimation
 
Call:
mle(minuslogl = LL, start = list(beta0 = 2, beta1 = 1.5, sigma = 1),
    fixed = list(mu = 0), nobs = length(y))
 
Coefficients:
       Estimate Std. Error
beta0 3.1080423 0.16779428
beta1 4.9516164 0.29319233
sigma 0.8782272 0.06209969
 
-2 log L: 257.8177

The resulting estimates for the slope and intercept are rather good. And we have standard errors for these parameters as well.

How about assessing the overall quality of the model? We can look at the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). These can be used to compare the performance of different models for a given set of data.

> AIC(fit)
[1] 263.8177
> BIC(fit)
[1] 271.6332
> logLik(fit)
'log Lik.' -128.9088 (df=3)

Returning now to the errors mentioned above. Both of the cases where the call to mle() failed resulted from problems with inverting the Hessian Matrix. With the implementation of mle() in the stats4 package there is really no way to get around this problem apart from having a good initial guess. In some situations though, this is just not feasible. There are, however, alternative implementations of MLE which circumvent this problem. The bbmle package has mle2() which offers essentially the same functionality but includes the option of not inverting the Hessian Matrix.

> library(bbmle)
>
> fit <- mle2(LL, start = list(beta0 = 3, beta1 = 1, mu = 0, sigma = 1))
>
> summary(fit)
Maximum likelihood estimation
 
Call:
mle2(minuslogl = LL, start = list(beta0 = 3, beta1 = 1, mu = 0,
    sigma = 1))
 
Coefficients:
      Estimate Std. Error z value  Pr(z)   
beta0 3.054021   0.083897 36.4019 <2e-16 ***
beta1 4.951617   0.293193 16.8886 <2e-16 ***
mu    0.054021   0.083897  0.6439 0.5196   
sigma 0.878228   0.062100 14.1421 <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
-2 log L: 257.8177

Here mle2() is called with the same initial guess that broke mle(), but it works fine. The summary information for the optimal set of parameters is also more extensive.

Fitting a linear model is just a toy example. However, Maximum-Likelihood Estimation can be applied to models of arbitrary complexity. If the model residuals are expected to be normally distributed then a log-likelihood function based on the one above can be used. If the residuals conform to a different distribution then the appropriate density function should be used instead of dnorm().

最大似然估计实例 | Fitting a Model by Maximum Likelihood (MLE)的更多相关文章

  1. Maximum Likelihood及Maximum Likelihood Estimation

    1.What is Maximum Likelihood? 极大似然是一种找到最可能解释一组观测数据的函数的方法. Maximum Likelihood is a way to find the mo ...

  2. 最大似然估计(Maximum Likelihood,ML)

    先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likeliho ...

  3. 似然函数 | 最大似然估计 | likelihood | maximum likelihood estimation | R代码

    学贝叶斯方法时绕不过去的一个问题,现在系统地总结一下. 之前过于纠结字眼,似然和概率到底有什么区别?以及这一个奇妙的对等关系(其实连续才是f,离散就是p). 似然函数 | 似然值 wiki:在数理统计 ...

  4. 最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

    最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写 ...

  5. 均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)

    maximum estimator method more known as MLE of a uniform distribution [0,θ] 区间上的均匀分布为例,独立同分布地采样样本 x1, ...

  6. 最大似然估计(Maximum likelihood estimation)(通过例子理解)

    似然与概率 https://blog.csdn.net/u014182497/article/details/82252456 在统计学中,似然函数(likelihood function,通常简写为 ...

  7. 最大似然估计(Maximum likelihood estimation)

    最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差 ...

  8. 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化

    1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...

  9. 最大似然估计(MLE)与最大后验概率(MAP)

    何为:最大似然估计(MLE): 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数. 最大似然估计 ...

随机推荐

  1. 20145308 《网络对抗》 MAL_免杀原理及实践 学习总结

    20145308 <网络对抗> MAL_免杀原理及实践 学习总结 实践内容 (1)理解免杀技术原理 (2)正确使用msf编码器,veil-evasion,自己利用shellcode编程等免 ...

  2. 线性回归、Logistic回归、Softmax回归

    线性回归(Linear Regression) 什么是回归? 给定一些数据,{(x1,y1),(x2,y2)…(xn,yn) },x的值来预测y的值,通常地,y的值是连续的就是回归问题,y的值是离散的 ...

  3. hdu 1151 Air Raid - 二分匹配

    Consider a town where all the streets are one-way and each street leads from one intersection to ano ...

  4. eclipse启动时发生的Initializing Java Tooling错误

    eclipse在启动发生An internal error occurred during: "Initializing Java Tooling". java.lang.Null ...

  5. 用uniGUI做B/S下业务系统的产品原型体验

    从10月份到重庆工作后,一直忙于工作,感兴趣的几个方面的技术都处于暂停. 一个多月来,按照公司要求在做B/S集中式基卫产品的原型,主要是画原型图,开始是用Axure,弄来弄去感觉功能还是弱了些,尤其是 ...

  6. Python3基础 list [] 创建空列表

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  7. android linux 休眠 深度睡眠 查看 方法 调试【转】

    本文转载自:https://blog.csdn.net/u011006622/article/details/72900552 在Android移动设备中,有时按下Power键(未接电源,USB)时, ...

  8. [POI2011]Garbage 欧拉回路

    [POI2011]Garbage 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2278 https://loj.ac/problem/216 ...

  9. P5091 【模板】欧拉定理

    思路 欧拉定理 当a与m互质时 \[ a^ {\phi (m)} \equiv 1 \ \ (mod\ m) \] 扩展欧拉定理 当a与m不互质且\(b\ge \phi(m)\)时, \[ a^b \ ...

  10. 【C#】神奇的yeild

    直接出栗子: class Program { static void Main(string[] args) { foreach (var item in FilterWithoutYield) { ...