Spark学习笔记——泰坦尼克生还预测
package kaggle import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.sql.{SQLContext, SparkSession}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.classification.{LogisticRegressionWithLBFGS, LogisticRegressionWithSGD, NaiveBayes, SVMWithSGD}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.stat.Statistics /**
* Created by mi on 17-5-23.
*/ object Titanic { def main(args: Array[String]) { // val sparkSession = SparkSession.builder.
// master("local")
// .appName("spark session example")
// .getOrCreate()
// val rawData = sparkSession.read.csv("/home/mi/下载/kaggle/Titanic/nohead-train.csv")
// val d = rawData.map{p => p.asInstanceOf[person]}
// d.show() val conf = new SparkConf().setAppName("WordCount").setMaster("local")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc) //屏蔽日志
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF) // 读取数据
val df = sqlContext.load("com.databricks.spark.csv", Map("path" -> "/home/mi/下载/kaggle/Titanic/train.csv", "header" -> "true")) // 分析年龄数据
val ageAnalysis = df.rdd.filter(d => d(5) != null).map { d =>
val age = d(5).toString.toDouble
Vectors.dense(age)
}
val ageMean = Statistics.colStats(ageAnalysis).mean(0)
val ageMax = Statistics.colStats(ageAnalysis).max(0)
val ageMin = Statistics.colStats(ageAnalysis).min(0)
val ageDiff = ageMax - ageMin // 分析船票价格数据
val fareAnalysis = df.rdd.filter(d => d(9) != null).map { d =>
val fare = d(9).toString.toDouble
Vectors.dense(fare)
}
val fareMean = Statistics.colStats(fareAnalysis).mean(0)
val fareMax = Statistics.colStats(fareAnalysis).max(0)
val fareMin = Statistics.colStats(fareAnalysis).min(0)
val fareDiff = fareMax - fareMin // 数据预处理
val trainData = df.rdd.map { d =>
val label = d(1).toString.toInt
val sex = d(4) match {
case "male" => 0.0
case "female" => 1.0
}
val age = d(5) match {
case null => (ageMean - ageMin) / ageDiff
case _ => (d(5).toString().toDouble - ageMin) / ageDiff
}
val fare = d(9) match {
case null => (fareMean - fareMin) / fareDiff
case _ => (d(9).toString().toDouble - fareMin) / fareDiff
} LabeledPoint(label, Vectors.dense(sex, age, fare))
} // 切分数据集和测试集
val Array(trainingData, testData) = trainData.randomSplit(Array(0.8, 0.2)) // 训练数据
val numIterations = 8
val lrModel = new LogisticRegressionWithLBFGS().setNumClasses(2).run(trainingData)
// val svmModel = SVMWithSGD.train(trainingData, numIterations) val nbTotalCorrect = testData.map { point =>
if (lrModel.predict(point.features) == point.label) 1 else 0
}.sum
val nbAccuracy = nbTotalCorrect / testData.count println("SVM模型正确率:" + nbAccuracy) // 预测
// 读取数据
val testdf = sqlContext.load("com.databricks.spark.csv", Map("path" -> "/home/mi/下载/kaggle/Titanic/test.csv", "header" -> "true")) // 分析测试集年龄数据
val ageTestAnalysis = testdf.rdd.filter(d => d(4) != null).map { d =>
val age = d(4).toString.toDouble
Vectors.dense(age)
}
val ageTestMean = Statistics.colStats(ageTestAnalysis).mean(0)
val ageTestMax = Statistics.colStats(ageTestAnalysis).max(0)
val ageTestMin = Statistics.colStats(ageTestAnalysis).min(0)
val ageTestDiff = ageTestMax - ageTestMin // 分析船票价格数据
val fareTestAnalysis = testdf.rdd.filter(d => d(8) != null).map { d =>
val fare = d(8).toString.toDouble
Vectors.dense(fare)
}
val fareTestMean = Statistics.colStats(fareTestAnalysis).mean(0)
val fareTestMax = Statistics.colStats(fareTestAnalysis).max(0)
val fareTestMin = Statistics.colStats(fareTestAnalysis).min(0)
val fareTestDiff = fareTestMax - fareTestMin // 数据预处理
val data = testdf.rdd.map { d =>
val sex = d(3) match {
case "male" => 0.0
case "female" => 1.0
}
val age = d(4) match {
case null => (ageTestMean - ageTestMin) / ageTestDiff
case _ => (d(4).toString().toDouble - ageTestMin) / ageTestDiff
}
val fare = d(8) match {
case null => (fareTestMean - fareTestMin) / fareTestDiff
case _ => (d(8).toString().toDouble - fareTestMin) / fareTestDiff
} Vectors.dense(sex, age, fare)
} val predictions = lrModel.predict(data).map(p => p.toInt)
// 保存预测结果
predictions.coalesce(1).saveAsTextFile("file:///home/mi/下载/kaggle/Titanic/test_predict")
}
}
Spark学习笔记——泰坦尼克生还预测的更多相关文章
- Spark学习笔记之SparkRDD
Spark学习笔记之SparkRDD 一. 基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ① 内存集合和外部存储系统 ② ...
- spark学习笔记总结-spark入门资料精化
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...
- Spark学习笔记2(spark所需环境配置
Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...
- Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...
- Spark学习笔记-GraphX-1
Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报 分类: Spark(8) 版权声明: ...
- Spark学习笔记3——RDD(下)
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...
- Spark学习笔记0——简单了解和技术架构
目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...
- Spark学习笔记2——RDD(上)
目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...
- Spark学习笔记1——第一个Spark程序:单词数统计
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...
随机推荐
- Python3.x使用PyMysql连接MySQL数据库
Python3.x使用PyMysql连接MySQL数据库 由于Python3.x不向前兼容,导致Python2.x中的很多库在Python3.x中无法使用,例如Mysqldb,我前几天写了一篇博客Py ...
- 通俗讲解 异步,非阻塞和 IO 复用
1. 阅前热身 为了更加形象的说明同步异步.阻塞非阻塞,我们以小明去买奶茶为例. 1.1 同步与异步 同步与异步的理解 同步与异步的重点在消息通知的方式上,也就是调用结果通知的方式. 同步: 当一个同 ...
- Minor GC 与Full GC有什么不一样
新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也非常快 老年代GC(Major GC/Full GC ...
- emSecure Use Digital Signatures to protect your products
emSecure Use Digital Signatures to protect your products emSecure is an RSA based software solution ...
- 什么是物理像素、虚拟像素、逻辑像素、设备像素,什么又是 PPI, DPI, DPR 和 DIP
什么是物理像素.虚拟像素.逻辑像素.设备像素,什么又是 PPI, DPI, DPR 和 DIP?有关 viewport 以及苹果安卓设备上的页面呈现为什么效果不一样,又有哪些方法去改变和统一呢?网络上 ...
- python测试开发django-48.xadmin上传图片django-stdimage
前言 django通过自带的ImageField可以实现图片上传,如果想在列表页面也显示图片缩略图的话,可以用django-stdimage插件来实现 django-stdimage django-s ...
- Android ANR Waiting because no window has focus问题分析
转自:https://www.cnblogs.com/MMLoveMeMM/articles/4849667.html 这种问题主要是发生在两个应用页面之间切换的时候,这个临界点的时候,一个页面正在起 ...
- Linux下RocketMQ环境的配置
RocketMQ是一款分布式消息系统,最初是由阿里巴巴消息中间件团队研发并大规模应用于生产系统,满足线上海量堆积的需求,在去年捐赠给Apache开源基金会,并列为孵化项目,今年成功的正式成为了apac ...
- SSE图像算法优化系列一:一段BGR2Y的SIMD代码解析。
一个同事在github上淘到一个基于SIMD的RGB转Y(彩色转灰度或者转明度)的代码,我抽了点时间看了下,顺便学习了一些SIMD指令,这里把学习过程中的一些理解和认识共享给大家. github上相关 ...
- MDX Cookbook 03 - MDX 查询中负数,零和空值 NULL 的格式化处理
FORMAT_STRING 属性在处理计算成员(通常是度量值成员)的时候会经常使用到,比如指定标准 Standard, 货币 Currency 或者 Percent 百分比格式.除此之外,还可以自定义 ...