uva 674 Coin Change 换钱币【完全背包】
题目链接:https://vjudge.net/contest/59424#problem/A
题目大意:
有5种硬币, 面值分别为1、5、10、25、50,现在给出金额,问可以用多少种方式组成该面值。
解题思路:
首先我们可以想到,用这些硬币组成11有多少种.
就是组成10的种数,加上组成6的种数,加上组成1的种数,因为这些面值都是加上一枚硬币就得到11了.
然后我们又能继续去求1组成10的种数,那么明显就是9,5,0的组成数的和.
需要注意的是1+5自底向上的方法,需要注意的是1+5和5+1是一种的,所以要处理一下,从小往大排就不会错了。
这道题我还不是很懂,以后再看看。 转载于>>>
记忆化搜索:很白痴的算法,直接交给下一层去算,算完记录下来以免之后重复算。
#include <cstdio>
#include <cstring>
const int MAXN = ;
const int coin[] = {, , , , };
int n;
long long dp[MAXN][]; long long solve(int i, int s) {
if (dp[s][i] != -)
return dp[s][i];
dp[s][i] = ;
for (int j = i; j < && s >= coin[j]; j++)
dp[s][i] += solve(j, s - coin[j]);
return dp[s][i];
} int main() {
memset(dp, -, sizeof(dp));
for (int i = ; i < ; i++)
dp[][i] = ;
while (scanf("%d", &n) != EOF)
printf("%lld\n", solve(, n));
return ;
}
递推:自底向上的方法,需要注意的是1+5和5+1是一种的,所以要处理一下,从小往大排就不会错了。
#include <cstdio>
const int MAXN = ;
int n, coin[] = {, , , , };
long long dp[MAXN] = {}; int main() {
for (int i = ; i < ; i++)
for (int j = ; j < MAXN - ; j++)
dp[j + coin[i]] += dp[j]; while (scanf("%d", &n) != EOF)
printf("%lld\n", dp[n]);
return ;
}
2018-04-30
uva 674 Coin Change 换钱币【完全背包】的更多相关文章
- UVA 674 Coin Change 换硬币 经典dp入门题
题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...
- UVA.674 Coin Change (DP 完全背包)
UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...
- UVA 674 Coin Change(dp)
UVA 674 Coin Change 解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...
- UVA 674 Coin Change 硬币转换(完全背包,常规)
题意:有5种硬币,个数无限的,组成n元的不同方案有多少种? 思路:常规完全背包.重点在dp[0]=1,dp[j]中记录的是组成 j 元的方案数.状态转移方程dp[j+coin[i]]+=dp[j]. ...
- UVa 674 Coin Change(完全背包)
https://vjudge.net/problem/UVA-674 题意: 计算兑换零钱的方法共有几种. 思路: 完全背包基础题. #include<iostream> #include ...
- UVA 674 Coin Change (完全背包)
解法 dp表示目前的种数,要全部装满所以f[0]=1其余为0的初始化是必不可少的 代码 #include <bits/stdc++.h> using namespace std; int ...
- UVA 674 Coin Change (DP)
Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...
- UVa 674 Coin Change【记忆化搜索】
题意:给出1,5,10,25,50五种硬币,再给出n,问有多少种不同的方案能够凑齐n 自己写的时候写出来方案数老是更少(用的一维的) 后来搜题解发现,要用二维的来写 http://blog.csdn. ...
- UVa 674: Coin Change
动态规划题.对于1,5,10,25,50五种币值的硬币,编号为0~4,存入数组cent中.数组iWay的元素iWay[k][i]表示仅使用0~i的硬币凑出k分钱的方法数,按是否使用编号为i的硬币分类, ...
随机推荐
- luogu P3978 [TJOI2015]概率论
看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...
- Synchronized和lock的区别和用法
一.synchronized和lock的用法区别 (1)synchronized(隐式锁):在需要同步的对象中加入此控制,synchronized可以加在方法上,也可以加在特定代码块中,括号中表示需要 ...
- python - json/pickle
# import json #将数据类型转换成字符串 # data = {"a":"123"} # a = json.dumps(data) # print(a ...
- 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...
- ubuntu 下 teamview 取消自动启动 autostart
sudo teamviewer daemon disable
- Centos6.5使用yum安装mysql——快速上手必备
第1步.yum安装mysql [root@stonex ~]# yum -y install mysql-server 安装结果: Installed: mysql-server.x86_6 ...
- 常见的移动端Web页面问题
移动端Web需要照顾触摸操作的体验,以及更多的屏幕旋转与尺寸适配等问题,非常琐碎,在这里为大家倾力总结多条常见的移动端Web页面问题解决方案,欢迎收看收藏! 1.安卓浏览器看背景图片,有些设备会模糊 ...
- 《TCP/IP 详解 卷1:协议》第 3 章:链路层
在体系结构中,我们知道:链路层(或数据链路层)包含为共享相同介质的邻居建立连接的协议和方法,同时,设计链路层的目的是为 IP 模块发送和接受 IP 数据报,链路层可用于携带支持 IP 的辅助性协议,例 ...
- 005_awk案例实战
一.工作经验总结. (1)日志案例: 10.100.194.39 10.100.194.39 1019-03-16T11:01:04+08:00 www.uuwatch.com^^3FF91DE01B ...
- dubbo作为消费者注册过程分析--????
请支持原创: http://www.cnblogs.com/donlianli/p/3847676.html 作者当前分析的版本为2.5.x.作者在分析的时候,都是带着疑问去查看代码,debug进 ...