题意:

题解:

思维难度不高,考虑到n较大,而反质数个数较少

所以只要算出每个反质数即可

考虑如何计算,可以发现,我们只需枚举计算出约数有x个的最小数,再做一下判断即可

另外约数的个数=(a1+1)(a2+1)(a3+1)......

其次有三个细节需要注意

1.是对约数个数的预计,小了会造成wa

2.相应约数就会相应需要计算2^3000次方,而由于实际答案不超过2e9,所以对于那些在任何一个环节超过2e9的都不用计算

3.在2的基础上,不要将2e9扩大太多,因为在运算中有将其平方的操作

代码:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 2999999999
#define INF2 2000000000
ll f[],b[][];
bool cmp(ll a,ll b)
{
return(a>b);
}
ll js(ll x,ll y,ll z)
{
if (x==) return(x);
ll tmp=INF;
for (ll i=y;i>;i--)
if (x%i==)
{
ll tmp2=b[z][i-]*js(x/i,i,z+);
if (tmp2!= && tmp2<=INF2) tmp=min(tmp,tmp2);
}
return(tmp);
}
int main(){
ll p=;
ll a[]={,,,,,,,,,,,,,,,};
for (ll i=;i<=p;i++)
{
b[i][]=;
for (ll j=;j<=;j++)
{
b[i][j]=b[i][j-]*a[i];
if (b[i][j]>INF2) break;
}
}
ll n,m=;
cin>>n;
for (ll i=;i<=m;i++)
{
f[i]=js(i,i,);
}
p=m;
ll maxn=;
// for (int i=1;i<=p;i++)cout<<f[i]<<endl;
for (int i=p-;i>=;i--)
f[i]=min(f[i+],f[i]);
for (int i=p;i>=;i--)
if (f[i]<=n)
{
maxn=max(maxn,f[i]);
}
cout<<maxn;
}

P1463 [SDOI2005]反素数ant的更多相关文章

  1. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  2. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  3. 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  4. Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】

    题目链接:https://www.luogu.org/problemnew/show/P1463 题意: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x ...

  5. [BZOJ1053][SDOI2005]反素数ant 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1053 假设这个最大的反素数为$x$,那么$1<p<x$中数的因子数都没有$x$ ...

  6. [SDOI2005]反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  7. 洛谷 1463[SDOI2005] 反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  8. 【BZOJ】【1053】【HAOI2007】反素数ant

    搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...

  9. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

随机推荐

  1. ASP.NET MVC深入浅出(被替换)

    一. 谈情怀-ASP.NET体系 从事.Net开发以来,最先接触的Web开发框架是Asp.Net WebForm,该框架高度封装,为了隐藏Http的无状态模式,ViewState功不可没,通过的控件的 ...

  2. python 小程序,猜年龄

    要求如下:

  3. TCP/IP详解 卷1 第一章概述

    第一章概述 1.2 分层 网络编程通常分不同层次进行开发,每一层负责不同的通信功能. 一个协议族比如TCP/IP,通常是一组不同层次上多个协议的组合.一般可以认为是是四层协议系统: 链路层:有时也称作 ...

  4. JS堆栈与拷贝

    一.堆栈的定义 1.栈是一种特殊的线性表.其特殊性在于限定插入和删除数据元素的操作只能在线性表的一端进行. 结论:后进先出(Last In First Out),简称为LIFO线性表.栈的应用有:数制 ...

  5. python日志和异常

    “日志”转载:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html "异常"转载:http://www.cnb ...

  6. oracle巡检脚本备份

    重做日志生成情况,一天生成日志大小:select round(sum(blocks*block_size)/1024/1024/1024,2) BLOCK from v\$archived_log w ...

  7. 在Asp.Net Core中使用中间件保护非公开文件

    在企业开发中,我们经常会遇到由用户上传文件的场景,比如某OA系统中,由用户填写某表单并上传身份证,由身份管理员审查,超级管理员可以查看. 就这样一个场景,用户上传的文件只能有三种人看得见(能够访问) ...

  8. Github简介

    先附上下载地址 http://windows.github.com/ git-scm.com是版本控制软件Git的官方网站. Git和GitHub的区别 Git是一个分布式的版本控制系统,与SVN类似 ...

  9. apache httpd.conf

    Apache的主配置文件:/etc/httpd/conf/httpd.conf 默认站点主目录:/var/www/html/ Apache服务器的配置信息全部存储在主配置文件/etc/httpd/co ...

  10. Android:自定义Dialog

    自定义Dialog:显示SeekBar 效果图: 步骤: //SettingActivity.java button4.setOnClickListener(new View.OnClickListe ...