题目链接

\(Description\)

每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大

\(Solution\)

01分数规划,然后dp,设f[i][j]表示i子树选j个的最大权值和,直接暴力背包转移即可

在枚举子节点选的数量时,假设x有1.2.3.4四个子节点,复杂度为 \(1*sz[1]+sz[1]*sz[2]+(sz[1]+sz[2])*sz[3]+(sz[1]+sz[2]+sz[3])*sz[4]\)

相当于每对点在LCA处有贡献,共会有n2对点,所以这部分复杂度为O(n2)

总O(n^2*log ans)

注: 初始值不要是0,因为会有较大负数。比如说 必须规定f[0][1]为-INF

eps为什么需要1e-5。。<1e-4结束不行吗(也许是因为这并不是精确答案?卡时大法好)

还可以在DFS序上DP?https://blog.csdn.net/CHN_JZ/article/details/78724391

//50024 kb    3512 ms 好慢啊。。
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=2505;
const double eps=1e-5,INF=1e10; int n,m,Enum,H[N],nxt[N],to[N],sz[N];
double cost[N],p[N],val[N],f[N][N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
void DFS(int x)
{
int mn=(x>0); sz[x]=mn;
for(int i=2; i<=m; ++i) f[x][i]=-INF;
f[x][1]=val[x];
for(int v,i=H[x]; i; i=nxt[i])
{
DFS(v=to[i]);
for(int j=sz[x]; j>=mn; --j)//倒序 //更新上限就是当前已有sz与子节点sz之和
for(int k=1; k<=sz[v]; ++k)
f[x][j+k]=std::max(f[x][j+k],f[x][j]+f[v][k]);
sz[x]+=sz[v];
}
}
double Solve(double x)
{
for(int i=1; i<=n; ++i) val[i]=p[i]-x*cost[i];
// memset(f,0xc2,sizeof f), f[0][0]=0;//too slow
DFS(0);
return f[0][m]>=0;
} int main()
{
m=read(), n=read();
for(int i=1; i<=n; ++i)
cost[i]=read(),p[i]=read(),AddEdge(read(),i);
double l=0.0,r=1e4,mid; val[0]=-INF;//f[0][1]
while(r-l>eps)
{
if(Solve(mid=(l+r)/2.0)) l=mid;
else r=mid;
}
printf("%.3lf",mid); return 0;
}

BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)的更多相关文章

  1. BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP

    要求比值最大,当然用分数规划. 二分答案,转化为选取一个最大的联通块使得它们的和大于0 然后我们直接DP. 复杂度$O(n^2\log {n})$ #include <map> #incl ...

  2. 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包

    [题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...

  3. bzoj 4753 最佳团体 —— 01分数规划+树形背包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753 注意赋初值为 -inf: eps 设为 1e-3 会 WA ... 代码如下: #in ...

  4. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  5. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  6. BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)

    看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...

  7. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  8. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  9. bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】

    01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...

随机推荐

  1. Apriori 算法python实现

    1. Apriori算法简介 Apriori算法是挖掘布尔关联规则频繁项集的算法.Apriori算法利用频繁项集性质的先验知识,通过逐层搜索的迭代方法,即将K-项集用于探察(k+1)项集,来穷尽数据集 ...

  2. k64 datasheet学习笔记3---Chip Configuration之Clock modules

    1.前言 本文主要讲述chip configure之clock配置相关的内容,主要包含如下三个部分: MCG configuration:Multipurpose clock generator OS ...

  3. ARMV8 Procedure Call Standard

    1.前言 2.  术语说明 Term Note ABI Application Binary Interface 应用程序二进制接口 EABI Embedded ABI  嵌入式ABI PCS Pro ...

  4. Linux系统无线网卡的安装【转】

    转自:http://www.linuxidc.com/Linux/2013-03/81473.htm 现在的很多的可移动无线网卡都是usb接口的,把这种网卡应用到windows操作系统上是很容易就能起 ...

  5. python3爬虫中文乱码之请求头‘Accept-Encoding’:br 的问题

    当用python3做爬虫的时候,一些网站为了防爬虫会设置一些检查机制,这时我们就需要添加请求头,伪装成浏览器正常访问. header的内容在浏览器的开发者工具中便可看到,将这些信息添加到我们的爬虫代码 ...

  6. select 不要 用*

    背景 说实在的,这有什么好记录的呢.记录这个有啥用,真是技术人员的吹毛求疵.说起来,就是给人装有用吧.既然记录了,也想个相关的段子吧.曾经有个同事写了个sql,效率极差,来了个女同事,竟然解决了,问题 ...

  7. Jquert data方法获取不到数据,显示为undefined。

    在使用jquery的data-xxxx自定义属性名使用小写 以下是我测试代码: 结果显示Undefined 现在将“data-Name”变为“data-name”,将大写的部分全部变为小写. 可以获取 ...

  8. centos6下通用二进制安装mysql5.5.33

    mysql5.5通用二进制格式安装方法 1.解压到 /usr/local 目录 # tar xf mysql-5.5.33-linux2.6-x86_64.tar.gz -C /usr/local 2 ...

  9. Android app 在线更新那点事儿(适配Android6.0、7.0、8.0)

    一.前言 app在线更新是一个比较常见需求,新版本发布时,用户进入我们的app,就会弹出更新提示框,第一时间更新新版本app.在线更新分为以下几个步骤: 1, 通过接口获取线上版本号,versionC ...

  10. 从html页面中抽取table表格数据

    /** * [getDataFromTrElems 获取表格行元素数据] * @param {[Object]} trElems [trs dom] * @param {[String]} type ...