约数 求反素数bzoj1053 bzoj1257
//约数 /*
求n的正约数集合:试除法
复杂度:O(sqrt(n))
原理:扫描[1,sqrt(N)],尝试d能否整除n,若能,则N/d也能
*/
int factor[],m=;
for(int i=;i*i<=n;i++){
if(n%i==){
factor[++m]=i;
if(i!=n/i) factor[++m]=n/i;
}
} /*
求[1,n]每个数的正约数集合:倍数法
复杂度:O(nlogn)
原理:对于每个数d,[1,n]中以d为约数的数就是d的倍数
*/
vector<int> factor[];
for(int i=;i<=n;i++)
for(int j=;i*j<=n;j++)
factor[i*j].push_back(i); /*两个推论
1.一个整数的约数个数上界 为2*sqrt(n)
2.[1,n]每个数的约数个数总和大约为nlogn
*/
/*
题意有点绕
每个人手里有一个非0数字,首先第k个人出列,然后按其手里的数字让下一个人出列
循环如此,设i为小于等于N的最大反素数,问第i个出列的人的编号
打表求反素数:按质因数大小递增顺序搜索每一个质因子,枚举每一个质因子的个数
唯一分解定理,一个数的因子数:(p1+1)(p2+1)(p3+1)...
性质1:一个反素数的质因子必然是从2开始连续的质数
性质2:
1 2 3 4 6 9 12 18 36
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define ll long long
#define inf 1<<29
int n,p[]={,,,,,,,,,,,},use[];
ll maxt,ans;//maxt是最大因子数,ans是当前的反质数
//id是素数表的下标,now是当前数字,tot是因子数,符合因子数公式
void dfs(ll id,ll now,ll tot){
if(tot>maxt)//找到了因子数更大的数
ans=now,maxt=tot;
else if(tot==maxt && now<ans)//找到因子数相同,但是数值更小的数
ans=now,maxt=tot;
use[id]=;
while(now*p[id]<=n && use[id]+<=use[id-]){//第二个是剪枝
use[id]++;
now*=p[id];
dfs(id+,now,tot*(use[id]+));
}
}
int main(){
scanf("%d",&n);
use[]=inf;
dfs(,,);
printf("%lld",ans);
return ;
}
推公式题,详见进阶指南p134
思路大概是:当i在区间[x,k/(k/x)]时,k/i的值都是一样的,那么这一段的值可以用等差数列求和公式做
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
long long n,k;
long long ans;
int main(){
scanf("%lld%lld",&n,&k);
ans=(long long)n*k;
for(int x=,gx=;x<=n;x=gx+){
gx=k/x?min(n,k/(k/x)):n;
ans-=(k/x)*(x+gx)*(gx-x+)/;//首项x*k/x,末项gx*k/x,项数gx-x+1
}
printf("%lld\n",ans);
}
约数 求反素数bzoj1053 bzoj1257的更多相关文章
- 51nod1060:最复杂的数(DFS求反素数)
把一个数的约数个数定义为该数的复杂程度,给出一个n,求1-n中复杂程度最高的那个数. 例如:12的约数为:1 2 3 4 6 12,共6个数,所以12的复杂程度是6.如果有多个数复杂度相等,输出最 ...
- 【BZOJ1053】[HAOI2007]反素数
[BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...
- zoj 1562 反素数 附上个人对反素数性质的证明
反素数的定义:对于不论什么正整数,其约数个数记为.比如,假设某个正整数满足:对随意的正整 数.都有,那么称为反素数. 从反素数的定义中能够看出两个性质: (1)一个反素数的全部质因子必定是从2開始的连 ...
- 【bzoj1053】反素数
[bzoj1053]反素数 题意 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例 ...
- BZOJ1053 [HAOI2007]反素数ant 数论
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 传送门 - BZOJ1053 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正 ...
- 【BZOJ1053】 反素数ant
BZOJ1053 反素数ant 我们先考虑唯一分解定理求出约数个数: \(x=a_1^{p_1}a_2^{p_2}a_3^{p_3}...a_k^{p_k}\) 然后\(num=\Pi_{i=1}^k ...
- 【BZOJ1053】[HAOI2007]反素数ant 暴力
[BZOJ1053][HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
- BZOJ1053:反素数(数学)
题目链接 对于任意的正整数\(x\),记其约数的个数为\(g(x)\).现在定义反素数:对于\(0<i<x\),都有\(g(x)>g(i)\),那么就称x为反素数. 现在给定一个数N ...
随机推荐
- Apache Solr 初级教程(介绍、安装部署、Java接口、中文分词)
Python爬虫视频教程零基础小白到scrapy爬虫高手-轻松入门 https://item.taobao.com/item.htm?spm=a1z38n.10677092.0.0.482434a6E ...
- Linux上安装Perl模块的两种方法
Linux/Unix下安装Perl模块有两种方法:手工安装和自动安装.第一种方法是从CPAN上下载 您需要的模块,手工编译.安装.第二种方法是联上internet,使用一个叫做CPAN的模块自动完 ...
- linux配置java环境变量jdk jre(详细)【转】
linux配置java环境变量(详细) 本文完全引用自: http://www.cnblogs.com/samcn/archive/2011/03/16/1986248.html 一. 解压安装jdk ...
- webx roadmap
SpringExt 自定义Spring Schema的例子 基于Spring可扩展Schema提供自定义配置支持 使用SpringExt扩展Webx的示例 扩展点和捐献 一个namespace下可以声 ...
- android 简单文件操作
1.布局 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:too ...
- 不同数据库下的web.config中数据库连接字符串
<connectionStrings> <add name="OADBConnectionString" connectionString="Data ...
- Shiro+Spring+SpringMVC+Mybatis整合
Demo源码地址,v1.0分支 https://github.com/jxjy/hr
- mysql 案例 ~ pt-kill工具的使用
一 简介:学习pt-kill工具使用 二 功能: 能按照多维角度进行kill的查杀,迅速的降低数据库使用负载 三 常用命令 pt-kill --match-command 'Query|Sleep' ...
- POST 上传 JSON 数据
// // ViewController.m // 03-post上传json // // Created by jerry on 15/10/10. // Copyright (c) 2015年 j ...
- mysql基本命令[转]
1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码 1.连接到本机上的MYSQL.首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root ...