畅通工程

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 29620    Accepted Submission(s): 15557

Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路? 
 
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 

注意:两个城市之间可以有多条道路相通,也就是说

3 3

1 2

1 2

2 1

这种输入也是合法的

当N为0时,输入结束,该用例不被处理。 
 
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。 
 
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
 
Sample Output
1 0 2 998
Hint
Hint
Huge input, scanf is recommended.

分析:对于不同的道路和不同的城镇,很容易想到是图的连通问题,所谓并查集,合并后,进行查找,主要说一下查找函数,请看

int find(int x){

return set[x]=(set[x]==x?x:find(set[x]));

}
在一个就是需要最短边的话 首先就应该想到,一个N个顶点的图,想连通的话,

必须得有多少条边呢? 应该是N-1,然后再根据并查集,连一对边就减1,最后

连完也就出来答案了.
代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>  

int N,M;//n代表点,m代表边
int set[1005];
int temp;  

int find(int x)
{
    return set[x]=(set[x]==x?x:find(set[x]));  

}
void merge(int a,int b)  //合并
{
    for(int i=1;i<=N;i++)
    {
        int x=find(a),y=find(b);
        if(x!=y)
        {
            set[x]=y;
            temp--;  //找到后就减1
        }
    }
}  

int main()
{
    while(scanf("%d%d",&N,&M),N!=0)
    {
        int a,b;
        temp=N-1;
        for(int j=1;j<=N;j++)
        {
            set[j]=j;
        }
        for(int i=1;i<=M;i++)
        {
            scanf("%d%d",&a,&b);
            merge(a,b);
        }
        printf("%d\n",temp);
    }
    return 0;
}  

利用少量的贪心:代码如下:

#include<stdio.h>
int bin[1002];
int findx(int x)
{
	int r=x;
	while(bin[r]!=r)
	r=bin[r];
	return r;
}
void merge(int x,int y)
{
	int fx,fy;
	fx=findx(x);
	fy=findx(y);
	if(fx!=fy)
	bin[fx]=fy;
}
int main()
{
	int i,n,m,x,y,count;
	while(scanf("%d",&n),n)
	{
		for(i=1;i<=n;i++)
		bin[i]=i;
		for(scanf("%d",&m);m>0;m--)
		{
			scanf("%d %d",&x,&y);
			merge(x,y);
		}
		for(count=-1,i=1;i<=n;i++)
			if(bin[i]==i)
			count++;
			printf("%d\n",count);
	}
}

利用并查集+贪心解决 Hdu1232的更多相关文章

  1. 并查集入门(hdu1232“畅通工程”)

    在学习并查集之前,首先需要明白基本的并查集可以完成的功能.并查集主要是用于处理不相交集合的合并问题.它是一种基础算法,在离散数学中,可以利用并查集求一个图的连通分支,利用其这个特性可以为我们解决一系列 ...

  2. HDU 1598 find the most comfortable road 并查集+贪心

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1598 find the most comfortable road Time Limit: 1000 ...

  3. [POJ2054]Color a Tree (并查集+贪心)

    POJ终于修好啦 题意 和UVA1205是同一题,在洛谷上是紫题 有一棵树,需要给其所有节点染色,每个点染色所需的时间是一样的都是11.给每个点染色,还有一个开销“当前时间×ci×ci”,cici是每 ...

  4. 分别利用并查集,DFS和BFS方法求联通块的数量

    联通块是指给定n个点,输入a,b(1<=a,b<=n),然后将a,b连接,凡是连接在一起的所有数就是一个联通块: 题意:第一行输入n,m,分别表示有n个数,有输入m对连接点,以下将要输入m ...

  5. POJ 1456 Supermarket 区间问题并查集||贪心

    F - Supermarket Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  6. HDU 2480 Steal the Treasure (并查集+贪心)

    题意:给你n个点,m条边,包括有向边与无向边,每条边都有一个权值.在每个点上都有一个人,他可以走与这个点直接相连的所有边中任意一条边一次,并且得到这个权值,就不能走了,注意这条路也只能被一个人走.问最 ...

  7. POJ_1456 Supermarket 【并查集/贪心】

    一.题面 POJ1456 二.分析 1.贪心策略:先保证从利润最大的开始判断,然后开一个标记时间是否能访问的数组,时间尽量从最大的时间开始选择,这样能够保证后面时间小的还能够卖. 2.并查集:并查集直 ...

  8. POJ1456:Supermarket(并查集+贪心)

    Supermarket Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 17634   Accepted: 7920 题目链接 ...

  9. UVA 1664 Conquer a New Region (并查集+贪心)

    并查集的一道比较考想法的题 题意:给你n个点,接着给你n-1条边形成一颗生成树,每条边都有一个权值.求的是以一个点作为特殊点,并求出从此点出发到其他每个点的条件边权的总和最大,条件边权就是:起点到终点 ...

随机推荐

  1. 提高Mysql查询速度的一些建议(转).

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  2. C++符号优先级

    C++符号优先级 优先级 操作符 功能 用法 结合性 1 ()[]->.::++-- Grouping operatorArray accessMember access from a poin ...

  3. IBM-x3650做RAID5更换硬盘后rebuild步骤分享

    1.按Ctrl+H进入WebBIOS配置 2.点击start 3.点击Drives,对slot5进行配置 4.选择slot5,选择Properties,点击Go按钮 5.选择MakeUnconfGoo ...

  4. java中什么是序列化和反序列化

    序列化:能够把一个对象用二进制的表示出来. 类似我第一个字节表示什么属性名词,第二个字节表示什么属性值,第几个字段表示有几个属性等. 而且这个二进制可以写到硬盘或者在网络上传输但不会破坏他的结构.一般 ...

  5. 网站用户身份识别俩大招之cookie

    导航: 原理介绍 代码实现 过程分析 追踪Cookie 原理介绍 众所周知,http协议是无状态的协议,简单理解是用户的前一步操作和后一步操作之间没有关系,互相不知道,不干扰.而在很多场景下,浏览网页 ...

  6. 打造适合你的ABP(1)---- 完善日志系统

    最近使用Abp开发了一个项目,对abp有一个大概的了解,第一个小项目接近尾声,新的项目马上开始,针对开发第一个项目中发现的问题及不方便的地方,本人做一些修改,特此记录,请大家多多指正! 本人的开发环境 ...

  7. JDBC:从原理到应用

    一.是为何物 1.概念 JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用J ...

  8. Java并发编程(一)-为什么要并发

    并发所带来的好处 1. 并发在某些情况(并不是所有情况)下可以带来性能上的提升 1) 提升对CPU的使用效率 提升多核CPU的利用率:一般来说一台主机上的会有多个CPU核心,我们可以创建多个线程,理论 ...

  9. SpringMVC格式转化错误之HTTP Status [400] – [Bad Request]

    SpringMVC中,如果直接为Date类型的属性赋值,服务器有可能会报HTTP Status [400] – [Bad Request] Type Status Report Description ...

  10. MongoDB 复制(副本集)

    MongoDB复制是将数据同步在多个服务器的过程. 复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性, 并可以保证数据的安全性. 复制还允许您从硬件故障和服务中断中恢复数据. ...