BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学

Description

    约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K(O≤K<N)只牝牛.
    请计算一共有多少种排队的方法.所有牡牛可以看成是相同的,所有牝牛也一样.答案对5000011取模

Input

一行,输入两个整数N和K.

Output

一个整数,表示排队的方法数.

Sample Input

4 2

Sample Output

6


枚举一个A牛的个数x,每两头A牛中间至少有K头B牛。

于是把这些必须放的减掉,就是一个挡板问题。

对答案的贡献是C[n-(x-1)*k][x]。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define mod 5000011
typedef long long ll;
#define N 100050
ll qp(ll x,ll y) {
ll re=1; for(;y;y>>=1ll,x=x*x%mod) if(y&1ll) re=re*x%mod; return re;
}
ll fac[N],inv[N];
int n,K;
void init() {
int i=0;
for(fac[0]=1,i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
inv[n]=qp(fac[n],mod-2);
for(i=n-1;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
ll C(int x,int y) {
if(x<y) return 0;
return fac[x]*inv[y]%mod*inv[x-y]%mod;
}
int main() {
scanf("%d%d",&n,&K);
init();
int i;
ll ans=0;
for(i=1;n-(i-1)*K>=i;i++) {
(ans+=C(n-(i-1)*K,i))%=mod;
}
printf("%lld\n",(ans+1)%mod);
}

BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学的更多相关文章

  1. BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 30  Solved: 17[Sub ...

  2. BZOJ 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛( dp )

    水题...忘了取模就没1A了.... --------------------------------------------------------------------------- #incl ...

  3. 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 243  Solved: 167[S ...

  4. 【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3398 以下牡牛为a,牝牛为b. 学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举 ...

  5. bzoj:3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛

    Description     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡 ...

  6. bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...

  7. BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(dp)

    题意     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K( ...

  8. BZOJ 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3398 题意: 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡 ...

  9. [Usaco2009 Feb]Bullcow 牡牛和牝牛

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3398 容易想到的一种\(dp\)就是:设\(dp[i][j]\)表示前\(i\)头牛里面有 ...

随机推荐

  1. IOS空数据页面,网络加载失败以及重新登陆View的封装(不需要继承)

    一.问题 对于B2C和B2B项目的开发者,可能会有一个订单列表为空,或者其他收藏页面为空,用户token失效,判断用户要重新登陆,以及后台服务错误等提示.本篇课文,看完大约10分钟. 原本自己不想写空 ...

  2. private static final 修饰符

    java修饰符分类修饰符字段修饰符方法修饰符根据功能同主要分下几种 1.权限访问修饰符 public,protected,default,private,四种级别修饰符都用来修饰类.方法和字段 包外 ...

  3. Spring Boot开发MongoDB应用实践

    本文继续上一篇定时任务中提到的邮件服务,简单讲解Spring Boot中如何使用MongoDB进行应用开发. 上文中提到的这个简易邮件系统大致设计思路如下: 1.发送邮件支持同步和异步发送两种 2.邮 ...

  4. FFPLAY的原理

    概要 电影文件有很多基本的组成部分.首先,文件本身被称为容器Container,容器的类型决定了信息被存放在文件中的位置.AVI和Quicktime就是容器的例子.接着,你有一组流,例如,你经常有的是 ...

  5. What’s new in Channels 2 摘译

    最近准备在一个老Django项目上启用Channels,Channels于今年2月2日发布2.0版本,这个版本包含很多不向前兼容的特性,为了新特性调研的需要,也为了方便社区,我新版本的What's N ...

  6. JAVAEE——BOS物流项目13:Quartz入门案例、核心概念、cron 表达式的格式(了解)

    1.quartz入门案例 本入门案例基于spring和quartz整合完成. 第一步:创建maven工程,导入spring和quartz相关依赖 第二步:创建任务类 第三步:在spring配置文件中配 ...

  7. OCR智能识别身份信息

    本人研究了两款OCR智能识别的API,下面做详解! 第一款是百度云的OCR识别,填写配置信息,每天有五百次免费的识别次数,适合中小型客户流量可以使用.API文档:http://ai.baidu.com ...

  8. JS中$含义和用法

    原博客:https://www.cnblogs.com/jokerjason/p/7404649.html$在JS中本身只是一个符号而异,在JS里什么也不是.但在JS应用库JQUERY的作者将之做为一 ...

  9. manifold tangent classifier

    The Manifold Tangent Classifier (MTC) Putting it all together, here is the high level summary of how ...

  10. 【读英文文档】Whetting Your Appetite(刺激你的食欲)

    如果你有很多工作是通过计算机来完成的,那么你一定希望其中的很多事情能够自动地实现.比方说,你希望在文本文件中实现查找和替换的功能,以某一种机制实现照片的重命名以及重新排序的功能,一个小型的数据库甚至是 ...