BZOJ 2694: Lcm [莫比乌斯反演 线性筛]
题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\)
无平方因子数?搞一个\(\mu(gcd(i,j))\)不就行了..不对不对有正负,是\(\mu^2\)才行
套路推♂倒 (ノ*・ω・)ノ
\sum\limits_{i=1}^n \sum\limits_{j=1}^m \frac{ij}{gcd(i,j)} \mu(gcd(i,j))^2
&=\sum_{d=1}^n d\ \mu(d^2) \sum_{i=1}^{\frac{n}{d}} \sum_{j=1}^{\frac{m}{d}}ij[gcd(i,j)=1]\\
&= \sum_{D=1}^n D\sum_{d|D} \mu(d)^2 \mu(\frac{D}{d})\frac{D}{d} \ f(\frac{n}{D}, \frac{m}{D}) \\
\end{align*}
\]
woc那是个smg,自己卷自己? $g(i) = i \cdot ((\mu \cdot \mu) * (\mu \cdot id))(i) $
如果我没猜错,点乘和卷积没有什么律吧
\(g(1) = 1\)
\(g(p) = p*(1-p)\)
观察那堆\(\mu\),分成的两个因子都有的话,相同的质数必须一边一个啊要不就是0没贡献了
考虑\(p \mid i\),\(i\)中还至少有一个\(p\),我们记录最小质因子的次数判断一下\(ip\)的质因子多于2个\(g(ip)=0\)了,正好两个的话肯定是一面一个,结果就是\(g(\frac{i}{p})*(-p)\)啊...不对不对,前面的\(i\)让你吃了?应该是\(*(-p\cdot p^2)\)
貌似还有更科学的想法,i除掉p后两个就互质了...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int N=4e6+5, INF=1e9, P = 1<<30;
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m;
int notp[N], p[N], cp[N]; ll g[N];
void sieve(int n) {
g[1] = 1;
for(int i=2; i<=n; i++) {
if(!notp[i]) p[++p[0]] = i, g[i] = i*(1-i), cp[i] = 1;
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
cp[t] = cp[i]+1;
if(cp[t] <= 2) g[t] = g[i/p[j]] * (-p[j] * p[j] * p[j]) %P;
else g[t] = 0;
break;
}
cp[t] = 1;
g[t] = g[i] * g[p[j]];
}
}
for(int i=1; i<=n; i++) (g[i] += g[i-1]) %=P;
}
inline ll f(ll n, ll m) {return ( n*(n+1)/2 %P) * ( m*(m+1)/2 %P)%P;}
ll cal(int n, int m) {
ll ans=0; int r;
for(int i=1; i<=n; i=r+1) {
r = min(n/(n/i), m/(m/i));
( ans += (g[r] - g[i-1]) * f(n/i, m/i) )%=P;
}
return (ans+P)%P;
}
int main() {
//freopen("in","r",stdin);
sieve(N-1);
int T=read();
while(T--) {
n=read(); m=read();
if(n>m) swap(n, m);
printf("%lld\n", cal(n, m));
}
}
BZOJ 2694: Lcm [莫比乌斯反演 线性筛]的更多相关文章
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- [bzoj] 2694 Lcm || 莫比乌斯反演
原题 定义整数a,b,求所有满足条件的lcm(a,b)的和: 1<=a<=A 1<=b<=B ∀n>1,n2†gcd(a,b)(即任意n>1,\(n^2\)不是gc ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛
题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】
看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
随机推荐
- LinkedHashMap 源码详细分析(JDK1.8)
1. 概述 LinkedHashMap 继承自 HashMap,在 HashMap 基础上,通过维护一条双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题.除此之外,Linke ...
- [国嵌攻略][137][DM9000网卡驱动编程]
DM9000数据发送 DM9000数据发送函数是在/drivers/net/dm9000.c中的dm9000_start_xmit函数 static int dm9000_start_xmit(str ...
- 如何完成域名和ip地址的绑定
首先,我们要知道什么是域名绑定,所谓域名绑定就是是指已选定的域名与服务器主机的空间绑定,实在是在域名注册查询上设置或者WEB服务器上设置,使一个域名被指导向一特定空间,从而使访问者访问你的域名的时候就 ...
- ecshop_标签大全
admin 后台功能 -------templates后台模板 data 上传文件.SQL备份文件.配置项 ------sqldata 数据库备份文件 ------config.php配置文件 inc ...
- Java数据持久层框架 MyBatis之API学习八(Java API详解)
对于MyBatis的学习而言,最好去MyBatis的官方文档:http://www.mybatis.org/mybatis-3/zh/index.html 对于语言的学习而言,马上上手去编程,多多练习 ...
- MYsql优化where子句
该部分讨论where子句的优化,不仅select之中,相同的优化同样试用与delete 和update语句中的where子句: 1: 移去不必要的括号: ((a AND b) AND c OR ((( ...
- Aps.net中基于bootstrapt图片上传插件的应用
Aps.net中基于bootstrapt图片上传插件的应用 在最近的项目中需要使用一个图片上传的功能,而且是多张图片同时上传到服务器的文件夹中,将图片路径存放在数据库中.为了外观好看使用了bootst ...
- 04 整合IDEA+Maven+SSM框架的高并发的商品秒杀项目之高并发优化
Github:https://github.com/nnngu 项目源代码:https://github.com/nnngu/nguSeckill 关于并发 并发性上不去是因为当多个线程同时访问一行数 ...
- python3 第十四章 - 数据类型之Dictionary(字典)
在python中字典是另一种可变容器模型,且可存储任意类型对象. 字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中 ,格式如下 ...
- JavaScript事件高级绑定
js 进行事件绑定,其中一种不常见的写法是: <div id="father" style="width: 300px; height: 200px; backgr ...