CF Round250 E. The Child and Binary Tree

题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同。

也就是说:不带标号,孩子有序

\(n,m \le 10^5\)


sro vfk picks orz


和卡特兰数很像啊,\(f_i\)权值为i的方案数,递推式

\[f[i] = \sum_{i\in C} \sum_{j=0}^{m-i}f[j]f[n-i-j]
\]


用OGF表示他

\[C(x)=\sum_{i\in C}x^i
\]

表示一个点的生成函数;

\[F(x) = \sum_{i=0}^m f_i x^i
\]

表示二叉树的生成函数。

根据生成函数乘法的定义,

\[F(x) = F^2(x) C(x) + 1
\]

其中1是因为空子树。


二次函数化简+分子有理化后得到

\[F(x) = \frac{2}{1 \pm \sqrt{1 - 4C(x) }}
\]

正负号怎么取?

\(F(0) = f_0 = 1\),所以只能取+号


然后多项式开根+多项式求逆就行啦!

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<18) + 5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int P = 998244353, g = 3, inv2 = (P+1)/2;
inline int Pow(ll a, int b) {
ll ans = 1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
} namespace ntt {
int maxlen = 1<<18, rev[N];
ll omega[N], omegaInv[N];
void dft(int *a, int n, int flag) {
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]); for(int l=2; l<=n; l<<=1) {
int m = l>>1;
ll wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l);
for(int *p = a; p != a+n; p += l) {
ll w = 1;
for(int k=0; k<m; k++) {
int t = w * p[k+m] %P;
p[k+m] = (p[k] - t + P) %P;
p[k] = (p[k] + t) %P;
w = w * wn %P;
}
}
}
if(flag == -1) {
ll inv = Pow(n, P-2);
for(int i=0; i<n; i++) a[i] = a[i] * inv %P;
}
} int t[N];
void inverse(int *a, int *b, int l) {
if(l == 1) {b[0] = Pow(a[0], P-2); return;}
inverse(a, b, l>>1);
int n = 1, k = 0; while(n < l<<1) n <<= 1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<l; i++) t[i] = a[i]; for(int i=l; i<n; i++) t[i] = 0;
dft(t, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) b[i] * (2 - (ll) t[i] * b[i] %P + P) %P;
dft(b, n, -1);
for(int i=l; i<n; i++) b[i] = 0;
} int ib[N];
void square_root(int *a, int *b, int l) {
if(l == 1) {b[0] = 1; return;}
square_root(a, b, l>>1); int n = 1, k = 0; while(n < l<<1) n <<= 1, k++;
for(int i=0; i<n; i++) ib[i] = 0;
inverse(b, ib, l);
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1)); for(int i=0; i<l; i++) t[i] = a[i]; for(int i=l; i<n; i++) t[i] = 0;
dft(t, n, 1); dft(b, n, 1); dft(ib, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) inv2 * (b[i] + (ll) t[i] * ib[i] %P) %P; dft(b, n, -1);
for(int i=l; i<n; i++) b[i] = 0;
}
} int n, m, c[N], a[N], f[N];
int main() {
freopen("in", "r", stdin);
n=read(); m=read()+1;
c[0] = 1;
for(int i=1; i<=n; i++) c[read()] -= 4;
for(int i=0; i<m; i++) if(c[i] < 0) c[i] += P; int len = 1; while(len < m) len <<= 1;
ntt::square_root(c, a, len);
a[0]++; if(a[0]>=P) a[0]-=P;
ntt::inverse(a, f, len);
for(int i=1; i<m; i++) printf("%d\n", f[i] * 2 %P);
}

Codeforces 250 E. The Child and Binary Tree [多项式开根 生成函数]的更多相关文章

  1. [bzoj3625][Codeforces 250 E]The Child and Binary Tree(生成函数+多项式运算+FFT)

    3625: [Codeforces Round #250]小朋友和二叉树 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 650  Solved: 28 ...

  2. Codeforces 438E. The Child and Binary Tree 多项式,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/CF438E.html 前言 没做过多项式题,来一道入门题试试刀. 题解 设 $a_i$ 表示节点权值和为 $i$ 的二叉树个数, ...

  3. [题解] Codeforces 438 E The Child and Binary Tree DP,多项式,生成函数

    题目 首先令\(f_i\)表示权值和为\(i\)的二叉树数量,\(f_0=1\). 转移为:\(f_k=\sum_{i=0}^n \sum_{j=0}^{k-c_i}f_j f_{k-c_i-j}\) ...

  4. bzoj 3625(CF 438E)The Child and Binary Tree——多项式开方

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3625 http://codeforces.com/contest/438/problem/E ...

  5. 【CF438E】The Child and Binary Tree(多项式运算,生成函数)

    [CF438E]The Child and Binary Tree(多项式运算,生成函数) 题面 有一个大小为\(n\)的集合\(S\) 问所有点权都在集合中,并且点权之和分别为\([0,m]\)的二 ...

  6. [codeforces438E]The Child and Binary Tree

    [codeforces438E]The Child and Binary Tree 试题描述 Our child likes computer science very much, especiall ...

  7. [题解] CF438E The Child and Binary Tree

    CF438E The Child and Binary Tree Description 给一个大小为\(n\)的序列\(C\),保证\(C\)中每个元素各不相同,现在你要统计点权全在\(C\)中,且 ...

  8. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  9. Codeforces 438E The Child and Binary Tree [DP,生成函数,NTT]

    洛谷 Codeforces 思路 看到计数和\(998244353\),可以感觉到这是一个DP+生成函数+NTT的题. 设\(s_i\)表示\(i\)是否在集合中,\(A\)为\(s\)的生成函数,即 ...

随机推荐

  1. BZOJ2425: [HAOI2010]计数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2425 其实能够构成的数就是原数的排列(算前导0),然后组合计数一下就可以了. #include ...

  2. 为什么vertical-align不起作用

    先看一段代码 <style> .title { margin:50px; color:blue; } .title span { font-size:24px; } .title span ...

  3. js代码性能优化的几个方法

    相信写代码对于大部分人都不难,但想写出高性能的代码就需要一定的技术积累啦,下面是一些优化JavaScript代码性能的常见方法. 一.注意作用域 1.避免全局查找 使用全局变量和函数肯定要比局部的开销 ...

  4. 最小生成树之Prim算法

    描述 最近,小Hi很喜欢玩的一款游戏模拟城市开放出了新Mod,在这个Mod中,玩家可以拥有不止一个城市了! 但是,问题也接踵而来--小Hi现在手上拥有N座城市,且已知这N座城市中任意两座城市之间建造道 ...

  5. Node类型知识大全

    Node类型 1.节点关系 每个节点都有一个childNodes属性,其中保存着一个NodeList对象.NodeList是一种类数组对象,用于保存一组有序的节点,可以通过位置来访问这些节点.请注意, ...

  6. Map,List,POJO深拷贝(序列化实现)方法与注意事项

    转载请注明出处,谢谢! 方法1: /*jdk >= 1.5*/ @SuppressWarnings("unchecked") public static <T> ...

  7. Laravel5.5 的 Homestead 开发环境部署

    首先明白以下几个概念 VirtualBox  -- Oracle 公司的虚拟机软件, 能运行在当前大部分流行的系统上; Vagrant 提供一种命令行接口, 允许自动化安装虚拟机, 并且因为是脚本编写 ...

  8. linux下yum命令出现Loaded plugins: fastestmirror

    yum install的时候提示:Loaded plugins: fastestmirror fastestmirror是yum的一个加速插件,这里是插件提示信息是插件不能用了. 不能用就先别用呗,禁 ...

  9. 新版Azure Automation Account 浅析(二) --- 更新Powershell模块和创建Runbook

    前篇我们讲了怎样创建一个自动化账户以及创建时候"Run As Account"选项背后的奥秘.这一篇针对在Azure自动化账户中使用Powershell Runbook的用户讲一下 ...

  10. List源码学习之LinkedList

    LinkedList 内部数据接口为一个链表,存储数据可为空可重复. 1.包含主要参数: //集合长度transient int size = 0; /** * 头结点 */ transient No ...