Rain in ACStar

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 788    Accepted Submission(s): 218

Problem Description
Maybe you have heard of Super Cow AC who is the great general of ACM Empire. However, do you know where he is from?
This is one of the ten biggest secrets of this world! And it is time to expose the truth! 
Yes, Super Cow AC is from ACStar which is ten million light-year away from our earth. No one, even AC himself, knows how AC came to our home. The only memory in his head is the strange rain in ACStar.
Because of the special gravity of ACStar, the raindrops in ACStar have many funny features. They have arbitrary sizes, color and tastes. The most interesting parts of the raindrops are their shapes. When AC was very young, he found that all the drops he saw
in air were convex hull. Once the raindrops fell to the ground, they would be absorb by the soil.

This year is set to be AC-year. In recognition of Great General AC's contribution to our empire, the Emperor decided to build a huge AC park. Inside this park there is a laboratory to simulate the rain in ACStar. As a researcher of this lab, you are appointed
to measure the volume of rain absorbed by soil. To simplify this problem, scientists put the rain into two-dimensional plane in which the ground is represented as a straight line and the raindrops are convex polygon. So the area of the graphics stands for
the volume of raindrops. 
You will receive two types of instructions:
1.R P (This type of instructions tell you sufficient information about the raindrops.)
2.Q A B (Ask you to report the volume of rain absorbed by soil of [A,B].)
Instructions are given in chronological order.
 
Input
The first line of the inputs is T(no more than 10), which stands for the number of test cases you need to solve. 
After T, the inputs will be each test case. The first line of each case will be N(no more than 25000), representing for the numbers of instructions. The following N lines will give instructions of the two types.
For each instruction of type 1, it will be followed by a line listing P (at least 3 and at most 5) points representing the convex polygon of the coming raindrop. The points are started by the leftmost point and are given in counterclockwise order. It's guaranteed
that no points of the same raindrop are in the same vertical line. 
All numbers are positive integer no more than 1000000000.
 
Output
For each instruction of type 2, output the corresponding result, which should be printed accurately rounded to three decimals.
It is guaranteed that the result is less than 1e8.
 
Sample Input
1
7
Q 1 100
R 4
10 10 11 10 13 11 12 11
Q 10 11
Q 1 100
R 3
100 20 120 20 110 30
Q 1 100
Q 12 120
 
Sample Output
0.000
0.250
1.000
1.000
100.250
/*
hdu3340 线段树+多边形
R x:表示在这有个x边形
Q l r:查询在[l,r]之间的多边形的面积 所以考虑用线段树解决,那么我们就要知道如何处理区间的面积,对于一个多边形,
它的每一条边都可以在两端作垂直于x轴的垂线然后形成一个梯形,于是用图形
上半部分的边形成的梯形和- 半部分的边形成的梯形和便能得到多边形面积。
而且两个同高的梯形的面积和等同于上底和下底的叠加 hhh-2016-03-02 20:54:04 Accepted
*/
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <queue>
#include <vector>
using namespace std;
typedef long long ll;
typedef long double ld;
const int maxn = 500200;
map<int,int>has;
vector<int> tp;
char op[10]; struct node
{
int l,r;
int mid()
{
return l+(r-l)/2;
}
double h1,h2,k,len;
double area;
} tree[maxn]; void push_up(int r)
{
tree[r].area = tree[r<<1].area+tree[r<<1|1].area;
} void build(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
tree[i].h1 = tree[i].h2 = tree[i].k = tree[i].area = 0;
tree[i].len = tp[r]-tp[l];
if(l == r) return;
if(l+1 != r)
{
build(i<<1,l,tree[i].mid());
build(i<<1|1,tree[i].mid(),r);
push_up(i);
}
} void push_down(int i)
{
int lson = i<<1,rson =i<<1|1;
double h1=tree[i].h1,h2=tree[i].h2,k=tree[i].k;
double md = (tp[tree[i].mid()]-tp[tree[i].l])*k+h1; tree[lson].h1+=h1,tree[lson].h2+=md,tree[lson].k+=k;
tree[lson].area += (h1+md)*tree[lson].len/2; tree[rson].h1+=md,tree[rson].h2+=h2,tree[rson].k+=k;
tree[rson].area += (md+h2)*tree[rson].len/2; tree[i].h1 = tree[i].h2 = tree[i].k = 0;
} void update(int i,int l,int r,double h1,double h2,double k)
{
if(tree[i].l >= l && tree[i].r <= r)
{
tree[i].h1+=h1,tree[i].h2+=h2,tree[i].k+=k;
tree[i].area += (h1+h2)*tree[i].len/2;
return ;
}
push_down(i);
double md= (tp[tree[i].mid()]-tp[l])*k+h1;
if(r <= tree[i].mid())
update(i<<1,l,r,h1,h2,k);
else if(l >= tree[i].mid())
update(i<<1|1,l,r,h1,h2,k);
else
{
update(i<<1,l,tree[i].mid(),h1,md,k);
update(i<<1|1,tree[i].mid(),r,md,h2,k);
}
push_up(i);
} double query(int i,int l,int r)
{
if(tree[i].l >= l && tree[i].r <= r)
{
return tree[i].area;
}
push_down(i);
double ans = 0;
if(l < tree[i].mid())
ans += query(i<<1,l,r);
if(tree[i].mid() < r)
ans += query(i<<1|1,l,r);
push_up(i);
return ans;
} struct point
{
int x[6],y[6];
int num;
void get()
{
num = 0;
scanf("%s",op);
if(op[0] == 'R')
{
scanf("%d",&num);
for(int i = 0; i < num; i++)
{
scanf("%d%d",&x[i],&y[i]);
tp.push_back(x[i]);
}
}
else
{
scanf("%d%d",&x[1],&y[1]);
tp.push_back(x[1]);
tp.push_back(y[1]);
}
}
} Point[50010]; int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
tp.clear(),has.clear();
scanf("%d",&n);
for(int i =1;i <= n;i++)
{
Point[i].get();
} sort(tp.begin(),tp.end());
tp.erase(unique(tp.begin(),tp.end()),tp.end());
for(int i = 0;i < (int)tp.size();i++)
has[tp[i]] = i;
build(1,0,tp.size()-1);
for(int i =1;i <= n;i++)
{
if(Point[i].num)
{
for(int j = 0;j < Point[i].num;j++)
{
int num = Point[i].num;
int x1=Point[i].x[j],y1=Point[i].y[j];
int x2=Point[i].x[(j+1)%num],y2=Point[i].y[(j+1)%num];
if(x1 > x2)swap(x1,x2),swap(y1,y2);
else y1=-y1,y2=-y2;
double k = (1.0*y1-1.0*y2)/(1.0*x1-1.0*x2);
update(1,has[x1],has[x2],y1,y2,k);
// printf("%.3f\n",query(1,has[1],has[100]));
}
}
else
{
int x = Point[i].x[1];
int y = Point[i].y[1];
printf("%.3f\n",query(1,has[x],has[y]));
}
}
}
return 0;
}

  

hdu3340 线段树+多边形的更多相关文章

  1. 线段树总结 (转载 里面有扫描线类 还有NotOnlySuccess线段树大神的地址)

    转载自:http://blog.csdn.net/shiqi_614/article/details/8228102 之前做了些线段树相关的题目,开学一段时间后,想着把它整理下,完成了大牛NotOnl ...

  2. [转载]完全版线段树 by notonlysuccess大牛

    原文出处:http://www.notonlysuccess.com/ (好像现在这个博客已经挂掉了,在网上找到的全部都是转载) 今天在清北学堂听课,听到了一些很令人吃惊的消息.至于这消息具体是啥,等 ...

  3. 【转】线段树完全版~by NotOnlySuccess

    线段树完全版  ~by NotOnlySuccess 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章了,觉 ...

  4. [IOI2018]排座位——线段树

    题目链接: IOI2018seat 题目大意:给出一个$H*W$的矩阵,将$0 \sim W*H-1$分别填入矩阵的格子里(每个格子里一个数),定义一个子矩阵是美妙的当且仅当这个子矩阵包含且仅包含$0 ...

  5. HDU 1542 - Atlantis - [线段树+扫描线]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. 《完全版线段树》——notonlysuccess

    转载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文 ...

  7. 【转】 线段树完全版 ~by NotOnlySuccess

    载自:NotOnlySuccess的博客 [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章 ...

  8. 【转载】完全版线段树 by notonlysuccess大牛

    原文出处:http://www.notonlysuccess.com/ 今晚上比赛就考到了 排兵布阵啊,难受. [完全版]线段树 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时 ...

  9. HDU 3340 Rain in ACStar(线段树+几何)

    HDU 3340 Rain in ACStar pid=3340" target="_blank" style="">题目链接 题意:给定几个多 ...

随机推荐

  1. python网络爬虫,知识储备,简单爬虫的必知必会,【核心】

    知识储备,简单爬虫的必知必会,[核心] 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌 ...

  2. Session 和 Cookie 区别

    会话跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.==Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端记录信息确定用 ...

  3. 逆向集录_00_不同程序OEP特征总结

    在分析/逆向 程序时,如果事先知道这类程序的一些特征,那将会是事半功倍的: 分析/逆向 程序,和写程序不同,比喻的话:写程序像在作案,分析/逆向 程序就像是在破案,对破案来讲,重在假想和推理: 特征1 ...

  4. Python扩展模块——调用WindowsAPI(pywin32的简单使用)

    这块使用的比较少,只用到了模拟键盘按键, 调用鼠标比较费事,是通过像素坐标实现的,如果没有特殊需求或万不得已不建议使用 import win32con import win32api win32api ...

  5. ssh框架-Struts2(二)

    上篇文章我们了解了怎么配置struts.xml文件,以及前端控制器配置怎么配置,,Action进阶,Result结果配置,Struts2中的Servlet的API的访问,以及怎么获得请求参数.今天我们 ...

  6. 增加Linux虚拟机的硬盘空间

    原配置为40G,现需要增加到60G,操作方法如下: 一.虚拟机关机,在编辑设置里调整硬盘空间到60G 二.虚拟机开机,扩展硬盘空间 1.安装gparted,命令如下 sudo apt-get inst ...

  7. restful架构风格设计准则(二)以资源为中心,一个url

    读书笔记,原文链接:http://www.cnblogs.com/loveis715/p/4669091.html,感谢作者! 1.REST是一种架构风格,其核心是面向资源,简化设计,降低开发的复杂性 ...

  8. maven环境变量的配置及+eclipse的配置使用

    1. 环境搭建(Maven+eclipse) 进入CMD 输入: mvn  –v   查看是否配置好 输入: mvn  -version 可以查看其安装的版本 在eclipse中配置maven: 在h ...

  9. wpf的tab移动焦点只能在容器内部使用

    设置 KeyboardNavigation.TabNavigation="Cycle" 即可

  10. Java面试题—中级(中)

    什么是线程死锁?死锁如何产生?如何避免线程死锁?   死锁的介绍:   线程死锁是指由于两个或者多个线程互相持有对方所需要的资源,导致这些线程处于等待状态,无法前往执行.当线程进入对象的synchro ...