hdu 3939(勾股+容斥)
题意:
给定一个整数L(L<=1e12),计算(x,y,z)组的个数。其中x<y<z,x^2+y^2=z^2,gcd(x,y)==1,gcd(x,z)==1,gcd(y,z)==1。
思路:
以下的方法可用来找出勾股数。设m>n 、 m 和 n 均是正整数,
a = m^2-n^2 b = 2mn c = m^2+n^2
若 m 和 n 是互质,而且 m 和 n 其中有一个是偶数,计算出来的
(a, b, c) 就是素勾股数
然后我们需要的便是计算m,n互质 qie m,n一奇一偶
因为 m^2*2 = a+c,所以可以求出m的范围 sqrt(l),然后可以求出n的范围t
于是通过枚举m,并求出n,然后对他们进行判断即可
①当m为偶数时,
如果m <= t,那么n可以取[1,m]中与m互质的数,因为他们一定是奇数
如果m > t,那么n只能取[1,t]中与m互质的数
②当m为奇数时:
如果m <= t,那么n可以取[1,m]中与m/2互质的数,如果ai是[1,m/2]中与m互质的,那么2*ai便是与m互质的偶数
如果m > t,那么n只能取[1,t]中与t/2互质的数
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double ld;
const ld eps=1e-10;
const int inf = 0x3f3f3f;
const int maxn = 1e6;
const int MOD = 1e9+7;
bool check[maxn+10];
int prime[maxn+10];
int phi[maxn+10];
int factor[105];
int facnum;
int tot; void phi_and_prime(int N)
{
memset(check,0,sizeof(check));
phi[1] = 1;
tot = 0; for(int i = 2; i <= N; i++)
{
if(!check[i])
{
prime[tot++] = i;
phi[i] = i - 1;
}
for(int j = 0; j < tot; j++)
{
if(i*prime[j] > N) break;
check[i*prime[j]] = true;
if(i % prime[j] == 0 )
{
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
else
{
phi[i * prime[j]] = phi[i] * (prime[j]-1);
}
}
}
} void fac(int x)
{
int tp = x;
facnum = 0;
for(int i = 0; i < tot && prime[i]*prime[i] <= maxn; i++)
{
if(tp % prime[i] == 0)
{
factor[facnum++] = prime[i];
while(tp % prime[i] == 0)
{
tp /= prime[i];
}
}
if(tp == 1)
break;
}
if(tp > 1)
factor[facnum ++ ] = tp; return ;
} ll ans;
void dfs(int cur,int mul,int tot,int n) //搜索实现互斥
{
if(cur == facnum)
{
if(tot & 1) ans = ans - n/mul;
else ans = ans + n/mul;
return ;
}
dfs(cur+1,mul*factor[cur],tot+1,n);
dfs(cur+1,mul,tot,n);
} int main()
{
int T;
ll n;
phi_and_prime(maxn);
scanf("%d",&T);
while(T--)
{
scanf("%I64d",&n);
ll p = sqrt(n + 0.5); //估计m范围
ans = 0;
for(int i = 1; i <= p; i++) //枚举
{
int q = sqrt(n - (ll)i*i + 0.5); //估计n的范围 if(i % 2)
{
fac(i);
if(q >= i) dfs(0,1,0,i>>1);
else dfs(0,1,0,q>>1);
}
else
{
fac(i);
if(q >= i) ans += phi[i];
else dfs(0,1,0,q);
}
}
printf("%I64d\n",ans);
}
return 0;
}
hdu 3939(勾股+容斥)的更多相关文章
- C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥
C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...
- HDU 5297 Y sequence 容斥 迭代
Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 4609 3-idiots FFT+容斥
一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...
- HDU 4336 Card Collector(容斥)
题意:要收集n种卡片,每种卡片能收集到的概率位pi,求收集完这n种卡片的期望.其中sigma{pi} <=1; 思路:容斥原理.就是一加一减,那么如何算期望呢.如果用二进制表示,0表示未收集到, ...
- HDU 4135 Co-prime(容斥+数论)
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 3970 Harmonious Set 容斥欧拉函数
pid=3970">链接 题解:www.cygmasot.com/index.php/2015/08/17/hdu_3970 给定n 求连续整数[0,n), 中随意选一些数使得选出的 ...
- HDU 4135 Co-prime(容斥:二进制解法)题解
题意:给出[a,b]区间内与n互质的个数 思路:如果n比较小,我们可以用欧拉函数解决,但是n有1e9.要求区间内互质,我们可以先求前缀内互质个数,即[1,b]内与n互质,求互质,可以转化为求不互质,也 ...
- 多校 HDU 6397 Character Encoding (容斥)
题意:在0~n-1个数里选m个数和为k,数字可以重复选: 如果是在m个xi>0的情况下就相当于是将k个球分割成m块,那么很明显就是隔板法插空,不能为0的条件限制下一共k-1个位置可以选择插入隔板 ...
随机推荐
- 一个C&C++程序的生命历程
翻了好多博客,内容星星点点,没找到我想要的,现在吸取大神精华,加上本人拙见,总结如下: 一个C或C++程序从你开始编写,到结束,整个过程,都做了些什么,请看下文: 先看大体的过程:看图: 我在这里主要 ...
- 十、Python练习----基础搭建飞机大战
只是简单的学习了pygame,实现飞机的摧毁还需要多张图片的切换,和sprite(碰撞精灵),还有多种音效的添加(如背景音乐.摧毁特效).以后再深入学习我只是练习一下python. 一.搭建界面(基于 ...
- 自己动手写CPU(基于FPGA与Verilog)
大三上学期开展了数字系统设计的课程,下学期便要求自己写一个单周期CPU和一个多周期CPU,既然要学,就记录一下学习的过程. CPU--中央处理器,顾名思义,是计算机中最重要的一部分,功能就是周而复始地 ...
- IDEA插件和快捷设置
前言 IDEA全名Intellij IDEA,是Java开发的集成环境,它有两个版本,专业版(Ultimate)和社区版(Community),专业版需要注册,而社区版不用注册,同时需要注意的是社区版 ...
- 分布式版本控制系统Git的安装及使用
Git的安装分为客户端安装和服务端安装,鉴于我平时码代码在windows环境下,因此本文客户端安装直接在windows环境,服务端安装在linux环境下(centos). Git客户端安装 客户端下载 ...
- vue组件详解(四)——使用slot分发内容
一.什么是slot 在使用组件时,我们常常要像这样组合它们: <app> <app-header></app-header> <app-footer>& ...
- 启动mongodb遇到的错:warning: 32-bit servers don't have journaling enabled by deflity
执行修复:mongod --repair即可 正常关闭:killall mongod
- JavaScript中的 原型 property 构造函数 和实例对象之间的关系
1 为什么要使用原型? /* * javascript当中 原型 prototype 对象 * * */ //首先引入 prototype的意义,为什么要使用这个对象 //先来写一个构造函数的面向对象 ...
- 这次彻底理解了Object这个属性
1.实例化Object对象 实例化Object对象的方式有两种:使用Object构造器和使用对象的字面量.例如: var person1 = { name: '李四' }; var person2 = ...
- JQuery Layer的应用实例
参考以上链接:https://blog.csdn.net/zlj_blog/article/details/24994799 sql面试题:https://www.cnblogs.com/qixuej ...