这题貌似是个权限题qwq,我是用离线题库+本地数据包测的

题目大意:

给你\(n\)个体积分别为\(w[i]\)的物品和容积\(m\),问你将每一件物品分别去掉之后,拼出\(1\)~\(m\)中每一个体积的方案数的个位数分别是多少,将答案矩阵输出。

输入样例:

3 2

1 1 2

输出样例:

11

11

21

考虑先做一次01背包,得到\(f\)数组,然后去掉不合法的方案。怎么去掉呢,首先枚举第\(i\)件物品,令\(g[x]\)表示不用第\(i\)件物品拼成体积为\(x\)的方案数,则\(g\)数组的转移如下:

1.\(x<w[i],g[x]=f[x]\)

2.\(x>=w[i],g[x]=f[x]-g[x-w[i]]\)(可以理解成先限制不选第\(i\)件物品,最后再选上,方案数就是总方案数减去不合法的方案数)

然后输出\(g\)数组就行了:

#include <bits/stdc++.h>

using namespace std;

#define N 2000

int n, m, w[N+5], f[N+5], g[N+5];

int main()
{
//freopen("2287.in", "r", stdin);
//freopen("2287.out", "w", stdout);
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i) scanf("%d", &w[i]), w[i] = w[i] > m ? m+1 : w[i];
f[0] = 1;
for(int i = 1; i <= n; ++i)
for(int j = m; j >= w[i]; --j) f[j] = (f[j]+f[j-w[i]])%10;
for(int i = 1; i <= n; ++i)
{
for(int j = 0; j < w[i]; ++j) g[j] = f[j];
for(int j = w[i]; j <= m; ++j) g[j] = ((f[j]-g[j-w[i]])%10+10)%10;
for(int j = 1; j <= m; ++j) printf("%d", g[j]);
printf("\n");
}
return 0;
}

BZOJ2287 消失之物的更多相关文章

  1. [bzoj2287]消失之物 题解(背包dp)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1138  Solved: 654[Submit][ ...

  2. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

  3. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  4. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

  5. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

  6. 【BZOJ2287】消失之物 [分治][DP]

    消失之物 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description ftiasch 有 N 个物品, ...

  7. 背包DP【bzoj2287】: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. &q ...

  8. bzoj2287【POJ Challenge】消失之物(退背包)

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 657  Solved: 382[Submit][S ...

  9. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

随机推荐

  1. 阿里巴巴矢量图标库(Iconfont)-利于UI和前端的搭配

    前端时间,做一个小网站的时候,需要用到很多小图标,UI设计好之后不知道如何使用,如果使用图片那会很麻烦,相信一些前端更喜欢iconfont这样的标签直接调用,这样包括颜色和大小以及使用都更方便快捷,于 ...

  2. iframe中的a标签电话链接不能正常打开

    背景 经测试,android手机中没有这个问题, iphone手机中的Safari浏览器会出现这个问题. 例如: <a href = "tel://1-408-555-5555&quo ...

  3. RxJava2.0入门篇

    传统用法:开启子线程去做耗时任务,业务逻辑越复杂,代码嵌套越严重,Rx系列出来很久了,想自己做一个总结,希望能帮到一部分人 观察者模式先提一嘴 这个老模式简直不想说太多,就说一下流程 1创建被观察者 ...

  4. SpringBoot 集成Apache Kafak 消息队列

    Kafka is a distributed,partitioned,replicated commit logservice.它提供了类似于JMS的特性,但是在实现上完全不同,此外它并不是JMS规范 ...

  5. 解决SVN Cleanup错误: Failed to run the WC DB work queue associated with

    [内容来源自https://www.cnblogs.com/ANCAN-RAY/p/8961832.html] 在svn本地目录更新文件夹时,更新失败. 然后svn提示我,让我cleanup一下,于是 ...

  6. 为什么作为下游的WSUS更新服务器总有一直处于下载状态的文件

    /* Style Definitions */ table.MsoNormalTable {mso-style-name:普通表格; mso-tstyle-rowband-size:0; mso-ts ...

  7. 破解idea地址

    https://blog.csdn.net/animatecat/article/details/81483174

  8. shell脚本监控

    监控磁盘空间 vim check_disk.sh #!/bin/bash # test common. #warn=$ #err=$ #mount=$ check_val() { /usr/bin/e ...

  9. Robust Principal Component Analysis?(PCP)

    目录 引 一些微弱的假设: 问题的解决 理论 去随机 Dual Certificates(对偶保证?) Golfing Scheme 数值实验 代码 Candes E J, Li X, Ma Y, e ...

  10. Linux程序前台后台切换

    1.在Linux终端运行命令的时候,在命令末尾加上 & 符号,就可以让程序在后台运行 root@Ubuntu$ ./tcpserv01 & 2.如果程序正在前台运行,可以使用 Ctrl ...