Dropping tests
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8349   Accepted: 2919

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k <n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

 
分析:这道题目要是看了01规划,大水题一道,
 01规划:http://www.cnblogs.com/perseawe/archive/2012/05/03/01fsgh.html
  不过最后要注意的是因为要四舍五入,所以不能直接对整数二分,最后输出+0.005就是为了四舍五入
#include<cstdio>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long LL;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
struct Node{
int a,b;
double temp;
}node[1005];
int n,k;
bool cmp(Node a ,Node b)
{
return a.temp>b.temp;
}
int ok(double mid)
{
for(int i=1;i<=n;i++)
node[i].temp=node[i].a*1.0-mid*node[i].b;
sort(node+1,node+n+1,cmp);
double sum=0;
for(int i=1;i<=n-k;i++)
sum+=node[i].temp;
return sum>=0;
}
int main()
{
while(~scanf("%d %d",&n,&k))
{
if(n==0&&k==0) return 0;
for(int i=1;i<=n;i++)
scanf("%d",&node[i].a);
for(int i=1;i<=n;i++)
scanf("%d",&node[i].b);
double l=0,r=1,mid;
while(r-l>1e-5)
{
mid=(l+r)/2;
if(ok(mid))
l=mid;
else
r=mid;
}
printf("%d\n",int(100*(l+0.005))); //四舍五入
}
return 0;
}

  

poj 2976 Dropping tests 二分搜索+精度处理的更多相关文章

  1. poj 2976 Dropping tests (二分搜索之最大化平均值之01分数规划)

    Description In a certain course, you take n tests. If you get ai out of bi questions correct on test ...

  2. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  3. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  4. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  6. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  7. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  8. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  9. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

随机推荐

  1. [转帖]linux中systemctl详细理解及常用命令

    linux中systemctl详细理解及常用命令 2019年06月28日 16:16:52 思维的深度 阅读数 30 https://blog.csdn.net/skh2015java/article ...

  2. 【B2B】01-BFS

    纠正我对 01-BFS 问题的错误认识. 我一直以为对于 01-BFS,每次点 $u$ 出队时,对于 $u$ 的邻接边表中的边,只要先松弛边权为 0 的边再松弛边权为 1 的边就能保证每个点只入队一次 ...

  3. 设计模式:状态模式(Status)

    在介绍状态模式之前,我们先来看这样一个实例:你公司力排万难终于获得某个酒店的系统开发项目,并且最终落到了你的头上.下图是他们系统的主要工作(够简单). 当你第一眼看到这个系统的时候你就看出来了这是一个 ...

  4. 小白学习django第四站-关联数据库

    使用mysql连接django首先要配置好相关环境 首先在setting.py配置数据库信息(需要现在mysql中创建一个数据库) 在setting.py那个目录的__init__.py文件中写入 之 ...

  5. 第二篇 jQuery 选择器

    2-1,2  table隔行变色 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "h ...

  6. 第一章 T-SQL查询和编程基础 T-SQL语言基础(2)

    T-SQL查询和编程基础 (2) 1.3 创建表和定义数据完整性 注意:表是属于架构,而架构又是属于数据库的 -- Create a database called testdb IF DB_ID(' ...

  7. 禁止antd Input.Password浏览器自动回传

    设置autoComplete为new-password

  8. python 基于detectron或mask_rcnn的mask遮罩区域进行图片截取

    基于示例infer_simple.py 修改165行vis_utils.vis_one_image为vis_utils.vis_one_image_opencv 在detectron.utils.vi ...

  9. Notepad++ 文件丢失了,找回历史文件方法

    一开始我还以为文件丢失找不到了,心凉了半截,后来找到了它的备份路径 C:\Users\Administrator\AppData\Roaming\Notepad++\backup

  10. SpringCloud 第一篇:服务的注册和发现(Eureka)

    一.spring cloud简介 spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选.分布式会话等等.它运 ...