首先考虑第一问。每个联通块的情况是相对独立的,所以可以分别求每个联通块的答案。无向图中存在欧拉路的条件是奇点数为0或2,那么合法方案肯定是tp到一个奇点,通过一条欧拉路到另一个奇点,再tp到另一个奇点……

设共k个联通块,第$i$个里奇点个数为$c_i$,那么答案即为$\sum_{i=1}^k max(1,\frac c2)-1$,最后-1是因为选起点不用浪费传送次数。

关于构造方案,我们先对于每个联通块求它内部的奇点。如果没有的话直接跑欧拉路即可。

如果有奇点,那么必有偶数个,因为每个联通块的点的度数之和必为偶数。可以新建一个源点,向所有奇点连边,再跑欧拉路。

最后的方案输出:

如果从源点到某个点,那这个点一定是奇点,操作为1 x。

从某个点跑到源点,显然不用管。

从点x跑到点y,操作为0 y。

另外,写暴力圈套圈的欧拉路算法还是要用非递归版的,直接dfs有可能爆栈也可能直接T掉(递归很慢)。

#include<cstdio>
#include<iostream>
#include<cstring>
#define pa pair<int,int>
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int N=1e5+5;
int n,m;
int to[N*10],nxt[N*10],head[N],tot=1,deg[N];
int st[N*10],top,vis[N],v[N*10];
int ans=0,cnt;
pa res[N*10];
void add(int x,int y)
{
to[++tot]=y;
nxt[tot]=head[x];
head[x]=tot;
deg[x]++;
}
void dfs(int x)
{
vis[x]=1;
if(deg[x]&1)st[++top]=x;
for(int i=head[x];i;i=nxt[i])
if(!vis[to[i]])dfs(to[i]);
return ;
}
int syst[N*10],systop;
void euler()
{
systop=0;
syst[++systop]=0;
while(systop>0)
{
int x=syst[systop],i=head[x];
while(i&&v[i])i=nxt[i];
if(i)
{
syst[++systop]=to[i];
v[i]=v[i^1]=1;
head[x]=nxt[i];
}
else systop--,st[++top]=x;
}
} int main()
{
n=read();m=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
int ans=0;
for(int i=1;i<=n;i++)
{
if(deg[i]&&!vis[i])
{
top=0;
dfs(i);
head[0]=0;
if(!top)add(0,i),add(i,0),add(i,0),add(0,i);
else while(top){int now=st[top--];add(0,now);add(now,0);};
euler();
int now;
while(top>1)
{
now=st[top--];
if(now)
res[++cnt]=make_pair(0,now);
else res[++cnt]=make_pair(1,st[top--]),ans++;
}
}
}
printf("%d\n%d\n",ans-1,res[1].second);
for(int i=2;i<=cnt;i++)
printf("%d %d\n",res[i].first,res[i].second);
return 0;
}

[jzoj5840]Miner 题解(欧拉路)的更多相关文章

  1. [CSP-S模拟测试]:Miner(欧拉路)

    题目背景 $And\ the\ universe\ said\ you\ are\ the\ daylight \\ And\ the\ universe\ said\ you\ are\ the\ ...

  2. 【HIHOCODER 1176】 欧拉路·一

    描述 小Hi和小Ho最近在玩一个解密类的游戏,他们需要控制角色在一片原始丛林里面探险,收集道具,并找到最后的宝藏.现在他们控制的角色来到了一个很大的湖边.湖上有N个小岛(编号1..N),以及连接小岛的 ...

  3. 洛谷 P1341 无序字母对 Label:欧拉路 一笔画

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  4. UVA - 10129Play on Words(欧拉路)

    UVA - 10129Play on Words Some of the secret doors contain a very interesting word puzzle. The team o ...

  5. hdu_5883_The Best Path(欧拉路)

    题目链接:hdu_5883_The Best Path 题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 题解: 节点 i 的贡献为((du[i] +1/ 2 ...

  6. 【cf789D】Weird journey(欧拉路、计数)

    cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...

  7. [cf1038E][欧拉路]

    http://codeforces.com/contest/1038/problem/E E. Maximum Matching time limit per test 2 seconds memor ...

  8. POJ 2513 - Colored Sticks - [欧拉路][图的连通性][字典树]

    题目链接: http://poj.org/problem?id=2513 http://bailian.openjudge.cn/practice/2513?lang=en_US Time Limit ...

  9. hdu 5833(欧拉路)

    The Best Path Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

随机推荐

  1. Unity编程标准导引-1.1下载和安装Unity

    本文为博主原创文章,欢迎转载,请保留出处:http://blog.csdn.net/andrewfan 1.1.下载和安装Unity 1.1.1 选取版本 首先找到Unity官方网站https://s ...

  2. LintCode之链表倒数第n个节点

    题目描述: 我的代码: /** * Definition for ListNode. * public class ListNode { * int val; * ListNode next; * L ...

  3. XScreenSaver强大的锁屏工具

    source install:  https://www.jwz.org/xscreensaver/ XScreenSaver     Related articles DPMS Xresources ...

  4. TypeScript:TypeScript 百科

    ylbtech-TypeScript:TypeScript 百科 TypeScript是一种由微软开发的自由和开源的编程语言.它是JavaScript的一个超集,而且本质上向这个语言添加了可选的静态类 ...

  5. DB-概念-同义词:同义词/Synonym

    ylbtech-DB-概念-同义词:同义词/Synonym 同义词的概念 :英文(synonym)是指向其它数据库表的数据库指针.同义词有私有(private)和公共(public)两种类型. 1.返 ...

  6. kubernetes安装部署

    1.根据系统内核情况,选择对应的ali云上的镜像,作为仓库的路径指向来配置k8s https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes- ...

  7. drf 分页,获取fk,choise,m2m等字段数据(序列化)

    1.什么是restful规范 是一套规则,用于程序之间进行数据交换的约定. 他规定了一些协议,对我们感受最直接的的是,以前写增删改查需要写4个接口,restful规范的就是1个接口,根据method的 ...

  8. CET-6 分频周计划生词筛选(Week 1)

    Week 1 2016.09.03 p17 bias = prejudice / prejudge p18 diminish p19 distinguish/extinguish + majority ...

  9. [题解]Crazy Binary String-前缀和(2019牛客多校第三场B题)

    题目链接:https://ac.nowcoder.com/acm/contest/883/B 题意: 给你一段长度为n,且只有 ‘0’ 和 ‘1’ 组成的字符串 a[0,...,n-1].求子串中 ‘ ...

  10. Selenium:下拉框处理(Select模块)

    在UI自动化测试过程中,经常会遇到一些下拉框,如果我们基于Webdriver操作的话就需要click两次,而且很容易出现问题,实际上Selenium给我们提供了专门的Select(下拉框处理模块). ...