BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143
(luogu) https://www.luogu.org/problemnew/show/P3232
题解: 水题。考虑如何求每个点的期望经过次数: 要求\(1\)号点开始\(n\)号点结束,那么\(1\)号点一定一上来就会经过一次,\(n\)号点一共只会经过\(1\)次。因此对于\(1\)到\(n-1\)的每一个点可以列出一个方程,其中\(1\)号点的方程是\(f[1]=\sum_{edge(u,1),1\le u\le n-1} \frac{f[u]}{du[u]}+1\) (\(du\)为度数), 其余点\(v\)的方程是\(f[v]=\sum_{edge(u,v),1\le u\le n-1} \frac{f[u]}{du[u]}\). 这个方程组有\((n-1)\)个未知数\((n-1)\)个方程,解出来即可。\(n\)号点怎么办?如果列出来其实应该是\(f[n]=\sum_{edge(u,n)} \frac{f[u]}{du[u]}=1\), 但是发现这个方程等价于前\((n-1)\)个方程加起来,所以就不用管了。
我们得到了每个点的期望经过次数,然后就可以轻易得到每条边期望经过次数,对于边\((u,v)\)其期望经过次数为\(\frac{f[u]}{du[u]}+\frac{f[v]}{du[v]}\), 其中\(f[n]\)视为\(0\). 根据期望的线性性,总得分期望就等于每条边期望经过次数乘以边权再求和,所以根据排序不等式给期望次数越小的边安排越大的边权即可。
时间复杂度\(O(n^3+m\log m)\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<algorithm>
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 500;
namespace Gauss
{
double a[N+3][N+3],b[N+3],sol[N+3];
void gauss(int n)
{
for(int i=1; i<=n; i++)
{
if(a[i][i]==0)
{
bool found = false;
for(int j=i+1; j<=n; j++)
{
if(a[i][j]!=0)
{
for(int k=i; k<=n; k++) swap(a[i][k],a[j][k]);
swap(b[j],b[i]);
found = true; break;
}
}
if(!found) continue;
}
for(int j=i+1; j<=n; j++)
{
if(a[j][i]!=0)
{
double coe = -a[j][i]/a[i][i];
for(int k=i; k<=n; k++) {a[j][k] += coe*a[i][k];}
b[j] += coe*b[i];
}
}
}
for(int i=n; i>=1; i--)
{
for(int j=i+1; j<=n; j++)
{
b[i] -= a[i][j]*sol[j];
}
sol[i] = b[i]/a[i][i];
}
}
}
struct AEdge
{
int u,v;
} e[N*N+3];
int du[N+3];
double f[N+3];
double coe[N*N+3];
int permu[N*N+3];
int n,m,en;
bool cmp(int x,int y) {return coe[x]>coe[y];}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1; i<=m; i++)
{
scanf("%d%d",&e[i].u,&e[i].v);
du[e[i].u]++; du[e[i].v]++;
}
for(int i=1; i<n; i++) Gauss::a[i][i] = -1.0;
for(int i=1; i<=m; i++)
{
int u = e[i].u,v = e[i].v;
if(u==n || v==n) continue;
Gauss::a[u][v] += 1.0/du[v]; Gauss::a[v][u] += 1.0/du[u];
}
Gauss::b[1] = -1.0;
Gauss::gauss(n-1);
for(int i=1; i<n; i++) f[i] = Gauss::sol[i];
for(int i=1; i<=m; i++)
{
int u = e[i].u,v = e[i].v;
coe[i] = f[u]/du[u]+f[v]/du[v];
}
for(int i=1; i<=m; i++) permu[i] = i;
sort(permu+1,permu+m+1,cmp);
double ans = 0.0;
for(int i=1; i<=m; i++) {ans += coe[permu[i]]*i;}
printf("%.3lf\n",ans);
return 0;
}
BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)的更多相关文章
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- BZOJ3143 [Hnoi2013]游走 【高斯消元】
题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
- [luogu3232 HNOI2013] 游走 (高斯消元 期望)
传送门 题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等 ...
- [HNOI2013]游走 期望+高斯消元
纪念首道期望题(虽说绿豆蛙的归宿才是,但是我打的深搜总觉得不正规). 我们求出每条边的期望经过次数,然后排序,经过多的序号小,经过少的序号大,这样就可以保证最后的值最小. 对于每一条边的期望经过次数, ...
- bzoj 3143 [Hnoi2013]游走【高斯消元+dp】
参考:http://blog.csdn.net/vmurder/article/details/44542575 和2337有点像 设点u的经过期望(还是概率啊我也分不清,以下都分不清)为\( x[u ...
- 【BZOJ3143】游走(高斯消元,数学期望)
[BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...
- LOJ 2542 「PKUWC2018」随机游走 ——树上高斯消元(期望DP)+最值反演+fmt
题目:https://loj.ac/problem/2542 可以最值反演.注意 min 不是独立地算从根走到每个点的最小值,在点集里取 min ,而是整体来看,“从根开始走到点集中的任意一个点就停下 ...
随机推荐
- [转帖]Marvell第二代ARM处理器ThunderX2解析
Marvell第二代ARM处理器ThunderX2解析 https://www.cnbeta.com/articles/tech/853137.htm 长久以来,服务器数据中心市场一直被x86 CPU ...
- Jquery复习(六)之remove()易忘点和trigger()
过滤被删除的元素 jQuery remove() 方法也可接受一个参数,允许您对被删元素进行过滤. 该参数可以是任何 jQuery 选择器的语法. 下面的例子删除 class="italic ...
- win7系统下MongoDB 4.0.1的安装
环境: win7 - 64位系统 MongoDB下载地址: https://www.mongodb.com/download-center#community 版本: 4.0.1 安装步骤: 选择cu ...
- jq each遍历数组或对象
var arr = ["北京","上海","天津","重庆","河北","河南" ...
- Java中遍历Set集合的方法
对 set 的遍历 1.迭代遍历: Set<String> set = new HashSet<String>(); Iterator<String> it = s ...
- docker search - 搜寻镜像
使用docker search 命令可以搜索docker hub官方仓库中的镜像. # docker search --help Usage: docker search [OPTIONS] TERM ...
- 五、vue中export和export default的使用
一.export的使用 比喻index.js要使用test.js中的数据,首先在test.js文件中进行导出操作 代码如下: export function list() { alert(" ...
- Big Data(三)伪分布式和完全分布式的搭建
关于伪分布式的配置全程 伪分布式图示 1.安装VMWare WorkStation,直接下一步,输入激活码即可安装 2.安装Linux(需要100GB) 引导分区Boot200MB 交换分区Swap2 ...
- string::front
char& front(); const char& front() const;功能:返回string对象的首个字符,可以改变它的值 #include <string># ...
- 清北学堂北京大学文宏宇神仙讲课day7
今天是最后一天 今天讲noip真题: ‘’ ‘’‘’ 课程终于还是上完了,收获比上一次多!