Codeforces Round #121 (Div. 1) C. Fools and Roads

time limit per test :2 seconds

memory limit per test : 256 megabytes

They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, populated by the fools and connected by the roads. All Berland roads are bidirectional. As there are many fools in Berland, between each pair of cities there is a path (or else the fools would get upset). Also, between each pair of cities there is no more than one simple path (or else the fools would get lost).

But that is not the end of Berland's special features. In this country fools sometimes visit each other and thus spoil the roads. The fools aren't very smart, so they always use only the simple paths.

A simple path is the path which goes through every Berland city not more than once.

The Berland government knows the paths which the fools use. Help the government count for each road, how many distinct fools can go on it.

Note how the fools' paths are given in the input.

Input

The first line contains a single integer n (2 ≤ n ≤ 105) — the number of cities.

Each of the next n - 1 lines contains two space-separated integers u**i, v**i (1 ≤ u**i, v**i ≤ n, u**i ≠ v**i), that means that there is a road connecting cities u**i and v**i.

The next line contains integer k (0 ≤ k ≤ 105) — the number of pairs of fools who visit each other.

Next k lines contain two space-separated numbers. The i-th line (i > 0) contains numbers a**i, b**i (1 ≤ a**i, b**i ≤ n). That means that the fool number 2i - 1 lives in city a**i and visits the fool number 2i, who lives in city b**i. The given pairs describe simple paths, because between every pair of cities there is only one simple path.

Output

Print n - 1 integer. The integers should be separated by spaces. The i-th number should equal the number of fools who can go on the i-th road. The roads are numbered starting from one in the order, in which they occur in the input.

Examples

Input

5
1 2
1 3
2 4
2 5
2
1 4
3 5

Output

2 1 1 1

Input

5
3 4
4 5
1 4
2 4
3
2 3
1 3
3 5

Output

3 1 1 1

Note

In the first sample the fool number one goes on the first and third road and the fool number 3 goes on the second, first and fourth ones.

In the second sample, the fools number 1, 3 and 5 go on the first road, the fool number 5 will go on the second road, on the third road goes the fool number 3, and on the fourth one goes fool number 1.

题目大意

给你一棵树,然后给你k个操作,每次操作输入两个整数a b

表示从a 走到b的边的权值都加1

一开始所有权值都为0

最后输出每条边的权值, 按照边输入的顺序

n <= 10^5

Solution

显然树链剖分可做

把边权该做下面的(dep深)的点权。

这样就处理好了

然后在跑一下树链剖分,注意公共祖先不能赋值。

在做的过程中注意边的编号要记录

然后就好了

code

#include<bits/stdc++.h>
#define DEBUG cerr << "Call out at function: " << __func__ << ", In line: " << __LINE__ << " --- "
using namespace std;
vector <int> f[110000];
vector <int> g[110000];
int n;
int w[110000];
int son[110000];
int seg[110000];int pl;
int rev[110000];
int dep[110000];
int top[110000];
int fa[110000];
int id[110000]; long long C[110000]; inline int lowbit(int x){
return x & (-x);
} void add(int x,long long v){
while (x > 0) C[x] += v, x -= lowbit(x);
} long long query(int x){
long long ret = 0;
while (x <= n) ret += C[x], x += lowbit(x);
return ret;
} int DFS1(int fat,int x)
{
fa[x] = fat;
w[x] = 1;
dep[x] = dep[fat] + 1;
int MAX = 0;
for (int i=0;i<f[x].size();i++)
if (f[x][i] != fat){
id[g[x][i]] = f[x][i];
int tmp = DFS1(x,f[x][i]);
w[x] += tmp;
if (tmp > MAX)
son[x] = f[x][i], MAX = tmp;
}
return w[x];
} void DFS2(int x){
seg[x] = ++pl;
rev[pl] = x;
if (son[x] == 0) return;
top[son[x]] = top[x];
DFS2(son[x]);
for (int i=0;i<f[x].size();i++){
if (f[x][i] != son[x] && f[x][i] != fa[x])
top[f[x][i]] = f[x][i], DFS2(f[x][i]);
}
} int add(int x,int y,long long val){
while (top[x] != top[y]){
if (dep[top[x]] < dep[top[y]])
swap(x,y);
add(seg[x],1);
add(seg[top[x]]-1,-1);
x = fa[top[x]];
}
if (dep[x] > dep[y])
swap(x,y);
add(seg[y],1);
add(seg[x],-1);
} int main()
{
cin >> n;
for (int i=1;i<n;i++){
int tp1,tp2;
cin >> tp1 >> tp2;
f[tp1].push_back(tp2);
f[tp2].push_back(tp1);
g[tp1].push_back(i);
g[tp2].push_back(i);
}
DFS1(-1,1);
top[1] = 1,DFS2(1);
int m;
cin >> m;
for (int i=1;i<=m;i++){
int tp1,tp2;
cin >> tp1 >> tp2;
add(tp1,tp2,1);
}
for (int i=1;i<=n-1;i++)
cout << query(seg[id[i]]) << ' ';
}

CF191C Fools and Roads - 树剖解法的更多相关文章

  1. Codeforces 191C Fools and Roads(树链拆分)

    题目链接:Codeforces 191C Fools and Roads 题目大意:给定一个N节点的数.然后有M次操作,每次从u移动到v.问说每条边被移动过的次数. 解题思路:树链剖分维护边,用一个数 ...

  2. Codeforces 191 C Fools and Roads (树链拆分)

    主题链接~~> 做题情绪:做了HDU 5044后就感觉非常easy了. 解题思路: 先树链剖分一下,把树剖分成链,由于最后全是询问,so~能够线性操作.经过树链剖分后,就会形成很多链,可是每条边 ...

  3. [CF191C]Fools and Roads

    题目大意:有一颗$n$个节点的树,$k$次旅行,问每一条被走过的次数. 题解:树上差分,$num_x$表示连接$x$和$fa_x$的边被走过的次数,一条路径$u->v$,$num_u+1,num ...

  4. CF 191C Fools and Roads lca 或者 树链剖分

    They say that Berland has exactly two problems, fools and roads. Besides, Berland has n cities, popu ...

  5. [CTSC2008]网络管理(整体二分+树剖+树状数组)

    一道经典的带修改树链第 \(k\) 大的问题. 我只想出三个 \(\log\) 的解法... 整体二分+树剖+树状数组. 那不是暴力随便踩的吗??? 不过跑得挺快的. \(Code\ Below:\) ...

  6. 2017多校第9场 HDU 6162 Ch’s gift 树剖加主席树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6162 题意:给出一棵树的链接方法,每个点都有一个数字,询问U->V节点经过所有路径中l < ...

  7. HDU 6162 Ch’s gift (树剖 + 离线线段树)

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  8. 51nod1307(暴力树剖/二分&dfs/并查集)

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1307 题意: 中文题诶~ 思路: 解法1:暴力树剖 用一个数 ...

  9. POJ2763 Housewife Wind(树剖+线段树)

    After their royal wedding, Jiajia and Wind hid away in XX Village, to enjoy their ordinary happy lif ...

随机推荐

  1. Jetty启动报错排查org.eclipse.jetty.util.MultiException: Multiple exceptions

    最近自己搭建了一个spring的项目,使用Maven做项目构建,使用JDK8,为了方便启动就使用jetty作为启动容器,但是却无意间步入了一个坑 [WARNING] Failed startup of ...

  2. HDU 1087 Super Jumping! Jumping! Jumping! (动态规划、最大上升子序列和)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. HDU 1029 Ignatius and the Princess IV (动态规划、思维)

    Ignatius and the Princess IV Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32767 K ( ...

  4. windows如何使用bat快速安装计划任务?

    关键词:windows定时任务,schtasks,at ,bat schtasks 部分转自: https://www.cnblogs.com/yumianhu/p/3710743.html at的详 ...

  5. Kettle的Kitchen和Span

    Kitchen——工作(job)执行器 (命令行方式) -rep  : Repository name   任务包所在存储名    -user  : Repository username   执行人 ...

  6. Springboot2.0加载指定配置文件@PropertySource的使用

    1. 在resouces下编写待加载的配置文件 这里使用person.properties # String person.last-name=john # int person.age=112 # ...

  7. jenkins配置windows节点遇到的问题

    配置:https://blog.csdn.net/liuchunming033/article/details/52025541 错误: 使用slave-agent.jnlp启动时报以下错误,是mas ...

  8. Java学习路线(完整详细版)

    Java学习路线(完整详细版) https://jingyan.baidu.com/article/c1a3101e110864de656deb83.html

  9. springboot学习1

    gradle环境配置 https://www.w3cschool.cn/gradle/ctgm1htw.html Spring profile 多环境配置管理 参考:https://www.cnblo ...

  10. 创建AIX克隆盘

    1.AIX的克隆盘技术 AIX克隆盘,AIX rootvg的备用替换盘,可以用于保留AIX的原始状态,使AIX在进行升级操作时保留一个AIX操作系统的原始映像,在系统需要时实现即时还原,回到升级操作前 ...