HDU 2243 考研路茫茫——单词情结 ( Trie图 && DP && 矩阵构造幂和 )
题意 : 长度不超过L,只由小写字母组成的,至少包含一个词根的单词,一共可能有多少个呢?这里就不考虑单词是否有实际意义。
比如一共有2个词根 aa 和 ab ,则可能存在104个长度不超过3的单词,分别为
(2个) aa,ab,
(26个)aaa,aab,aac...aaz,
(26个)aba,abb,abc...abz,
(25个)baa,caa,daa...zaa,
(25个)bab,cab,dab...zab。
分析 : 这题和 POJ 2778 非常相似,如果没有做过 POJ 2778 建议先去搞定那道题。此题难点就在于这个是要求不超过 L 长度包含词根的单词,根据解决 POJ 2778 的经验,我们可以得出 答案 = 总单词种类数 - 不包含词根的单词数。首先总单词数可以很容易想到为 261 + 262 + 263 + ..... + 26L ,而不包含词根的单词总数可以这样得到 ==> 假设原 Trie 图构建出来的状态矩阵为 A ,那么同样的我们需要构造一个幂和即 A1 + A2 + A3 + ..... + AL 然后最后的答案便是 ∑AL(0, i) ( i ∈ 1~矩阵长度 ) ,那怎么去构造这两个幂和呢?
只要利用这个公式即可,用原矩阵 + 单位矩阵 + 零矩阵构造出新矩阵,最后右上角的矩阵便是幂和的矩阵!
这里还有一点要注意,就是对于 2^64次方求模有一个很巧的方法,也就是直接定义为 unsigned long long (范围 : 0 ~ 2^64 -1),溢出就相当于求模了!
#include<string.h> #include<stdio.h> #include<iostream> #include<queue> #define ULL unsigned long long using namespace std; ; ; int maxn;///矩阵的大小 ]; ][]; }unit, M; mat operator * (mat a, mat b){ mat ret; ; i<maxn; i++){ ; j<maxn; j++){ ret.m[i][j] = (ULL); ; k<maxn; k++){ ret.m[i][j] += a.m[i][k]*b.m[k][j]; } } } return ret; } inline void init_unit() { ; i<maxn; i++) unit.m[i][i] = ; } mat pow_mat(mat a, long long n){ mat ret = unit; while(n){ ) ret = ret * a; a = a*a; n >>= ; } return ret; } struct Aho{ struct StateTable{ int Next[Letter]; int fail, flag; }Node[Max_Tot]; int Size; queue<int> que; inline void init(){ while(!que.empty()) que.pop(); memset(Node[].Next, , ].Next)); Node[].fail = Node[].flag = ; Size = ; } inline void insert(char *s){ ; ; s[i]; i++){ int idx = s[i] - 'a'; if(!Node[now].Next[idx]){ memset(Node[Size].Next, , sizeof(Node[Size].Next)); Node[Size].fail = Node[Size].flag = ; Node[now].Next[idx] = Size++; } now = Node[now].Next[idx]; } Node[now].flag = ; } inline void BuildFail(){ Node[].fail = -; ; i<Letter; i++){ ].Next[i]){ Node[Node[].Next[i]].fail = ; que.push(Node[].Next[i]); }].Next[i] = ;///必定指向根节点 } while(!que.empty()){ int top = que.front(); que.pop(); ; ; i<Letter; i++){ int &v = Node[top].Next[i]; if(v){ que.push(v); Node[v].fail = Node[Node[top].fail].Next[i]; }else v = Node[Node[top].fail].Next[i]; } } } inline void BuildMatrix(){ ; i<Size; i++) ; j<Size; j++) M.m[i][j] = ; ; i<Size; i++){ ; j<Letter; j++){ if(!Node[i].flag && !Node[ Node[i].Next[j] ].flag) M.m[i][Node[i].Next[j]]++; } } maxn = Size; } }ac; ULL GetSum(long long num){ mat ret; ret.m[][] = ; ret.m[][] = ; ret.m[][] = ; ret.m[][] = ; int tmp = maxn; maxn = ; ret = pow_mat(ret, ++num); maxn = tmp; ][]-; } ULL GetElimination(long long num){ mat tmp; ; i<maxn; i++)///左上角 为 原矩阵 ; j<maxn; j++) tmp.m[i][j] = M.m[i][j]; ; i<maxn; i++)///右上角 为 单位矩阵 ); j++) tmp.m[i][j] = (i+maxn == j); ); i++)///左下角 为 零矩阵 ; j<maxn; j++) tmp.m[i][j] = ; ); i++)///右下角 为 单位矩阵 ); j++) tmp.m[i][j] = (i==j); int Temp = maxn; maxn <<= ;///先将原本矩阵的大小放大一倍进行快速幂运算,这个和我快速幂的写法有关 tmp = pow_mat(tmp, ++num); ULL ret = (ULL); maxn = Temp;///再回复成原来大小 ); i++)///右上角的矩阵就是幂和了 ret += tmp.m[][i]; return (--ret);///需要 -1 } int main(void) { int n, m; while(~scanf("%d %d", &m, &n)){ ac.init(); ; i<m; i++){ scanf("%s", S); ac.insert(S); } ac.BuildFail(); ac.BuildMatrix(); init_unit(); ULL Tot = GetSum((long long)n);///注意是传long long不然会爆int ULL Elimination = GetElimination((long long)n); cout<<Tot-Elimination<<endl; } ; }
HDU 2243 考研路茫茫——单词情结 ( Trie图 && DP && 矩阵构造幂和 )的更多相关文章
- HDU 2243考研路茫茫——单词情结 (AC自动机+矩阵快速幂)
背单词,始终是复习英语的重要环节.在荒废了3年大学生涯后,Lele也终于要开始背单词了. 一天,Lele在某本单词书上看到了一个根据词根来背单词的方法.比如"ab",放在单词前一般 ...
- HDU 2243 考研路茫茫――单词情结 ——(AC自动机+矩阵快速幂)
和前几天做的AC自动机类似. 思路简单但是代码200余行.. 假设solve_sub(i)表示长度为i的不含危险单词的总数. 最终答案为用总数(26^1+26^2+...+26^n)减去(solve_ ...
- HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意: 给出m个模式串,求长度不超过n的且至少包含一个模式串的字符串个数. 思路: 如果做过poj2778 ...
- HDU 2243 考研路茫茫——单词情结(AC自动机+矩阵)
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 2243 考研路茫茫——单词情结(AC自动机+DP+快速幂)
题目链接 错的上头了... 这题是DNA的加强版,26^1 +26^2... - A^1-A^2... 先去学了矩阵的等比数列求和,学的是第二种方法,扩大矩阵的方法.剩下就是各种模板,各种套. #in ...
- hdu 2243 考研路茫茫——单词情结(AC自动+矩阵)
考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- HDU 2243 考研路茫茫——单词情结
考研路茫茫——单词情结 Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID ...
- hdu 2243 考研路茫茫——单词情结 ac自动机+矩阵快速幂
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <23 ...
- HDU 2243 考研路茫茫——单词情结 求长度小于等于L的通路总数的方法
http://acm.hdu.edu.cn/showproblem.php?pid=2243 这是一题AC自动机 + 矩阵快速幂的题目, 首先知道总答案应该是26^1 + 26^2 + 26^3 .. ...
随机推荐
- C++:函数求数根(总算写出来了。。。。)
[问题描述] 数根问题递归求解:输入n个正整数(输入格式中第一行为整数个数n,后续行为n个整数),输出各个数的数根.数根的定义:对于一个正整数n,我们将它的各个位相加得到一个新的数字,如果这个数字是一 ...
- Win10.Shift+鼠标右键_CMD(管理员)
1.资料: 1.1.Windows10下设置Shift+右键增加cmd - wyx0712的博客 - CSDN博客.html(https://blog.csdn.net/wyx0712/article ...
- 第十四周总结&实验报告八
实验八 实现一个简单的记事本操作,有菜单项的 import java.awt.event.ActionEvent; import java.awt.event.ActionListener; impo ...
- PhoneGap学习网址
官网:http://app-framework-software.intel.com/ 下载地址:http://download.csdn.net/download/haozq2012/7635951
- Linux环境部署Node.js
介绍 先前在阿里云ECS上部署Node.js,碰到不少坑,都是自己不仔细造成的,所以准备再部署一遍,并记录下来.我将我的服务器重置了,这次选择的是CentOS 7.4 64位,上次的是7.2的. 使用 ...
- 遍历文件夹下的csv,把数据读进一张表
import pandas as pd import os if __name__ == '__main__': Path = 'c:\checklog' dfs = [] for dir_path, ...
- yii日志保存机制
一.修改yii框架的配置文件(main.php) 'log' => array( 'class' => 'CLogRouter', 'routes' => array( array( ...
- 【C#】获取"我的电脑"的名字,如This PC、这台计算机
原文:[C#]获取"我的电脑"的名字,如This PC.这台计算机 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接: ...
- Kibana 基本操作
es中的索引对应mysql的数据库.类型对应mysql的表.文档对应mysql的记录.映射对应mysql的索引索引:index类型:type映射:mappings 1.创建索引在kibana的Dev ...
- 如何利用scrapy新建爬虫项目
抓取豆瓣top250电影数据,并将数据保存为csv.json和存储到monogo数据库中,目标站点:https://movie.douban.com/top250 一.新建项目 打开cmd命令窗口,输 ...